Second-order distorted wave calculation for electron impact ionization of hydrogen

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)


The triple differential cross sections for ionization of atomic hydrogen by electron impact are analysed in the case of coplanar, asymmetric geometry within the framework of second- order distorted wave theory. Detailed calculations are performed without making any approximations (other than numerical) in the evaluation of the second-order amplitude. The present results are compared with experimental measurements and other theoretical calculations for incident energies of 250, 150 and 54.4 eV. It is found that the second-order calculations represent a marked improvement over the results obtained from first-order theories for impact energies of 150 eV and higher. The close agreement between the present second-order plane wave calculation and those of Byron et al calculated using the closure approximation at an incident energy of 250 eV implies that the closure approximation is valid for this energy. The large difference between the present second-order distorted wave calculations and experiment at an incident energy of 54.4 eV suggests that higher order effects are important for incident energies less than 100 eV.
Original languageEnglish
Pages (from-to)981-995
Number of pages15
JournalJournal of Physics B: Atomic Molecular and Optical Physics
Issue number5
Publication statusPublished - 14 Mar 2004

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Physics and Astronomy(all)


Dive into the research topics of 'Second-order distorted wave calculation for electron impact ionization of hydrogen'. Together they form a unique fingerprint.

Cite this