Slower postnatal growth is associated with delayed cerebral cortical maturation in preterm newborns

Jillian Vinall, Ruth E Grunau, Rollin Brant, Vann Chau, Kenneth J Poskitt, Anne R Synnes, Steven P Miller

Research output: Contribution to journalArticlepeer-review

115 Citations (Scopus)


Slower postnatal growth is an important predictor of adverse neurodevelopmental outcomes in infants born preterm. However, the relationship between postnatal growth and cortical development remains largely unknown. Therefore, we examined the association between neonatal growth and diffusion tensor imaging measures of microstructural cortical development in infants born very preterm. Participants were 95 neonates born between 24 and 32 weeks gestational age studied twice with diffusion tensor imaging: scan 1 at a median of 32.1 weeks (interquartile range, 30.4 to 33.6) and scan 2 at a median of 40.3 weeks (interquartile range, 38.7 to 42.7). Fractional anisotropy and eigenvalues were recorded from 15 anatomically defined cortical regions. Weight, head circumference, and length were recorded at birth and at the time of each scan. Growth between scans was examined in relation to diffusion tensor imaging measures at scans 1 and 2, accounting for gestational age, birth weight, sex, postmenstrual age, known brain injury (white matter injury, intraventricular hemorrhage, and cerebellar hemorrhage), and neonatal illness (patent ductus arteriosus, days intubated, infection, and necrotizing enterocolitis). Impaired weight, length, and head growth were associated with delayed microstructural development of the cortical gray matter (fractional anisotropy: P <0.001), but not white matter (fractional anisotropy: P = 0.529), after accounting for prenatal growth, neonatal illness, and brain injury. Avoiding growth impairment during neonatal care may allow cortical development to proceed optimally and, ultimately, may provide an opportunity to reduce neurological disabilities related to preterm birth.
Original languageEnglish
Pages (from-to)168ra8
Number of pages9
JournalScience Translational Medicine
Issue number168
Publication statusPublished - 16 Jan 2013

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Slower postnatal growth is associated with delayed cerebral cortical maturation in preterm newborns'. Together they form a unique fingerprint.

Cite this