Sound Synthesis for Contact-Driven Musical Instruments via Discretisation of Hamilton's Equations

Vasileios Chatziioannou, Maarten Van Walstijn

Research output: Contribution to conferencePaperpeer-review

106 Downloads (Pure)


Physical modelling of musical instruments involves studying nonlinear interactions between parts of the instrument. These can pose several difficulties concerning the accuracy and stability of numerical algorithms. In particular, when the underlying forces are non-analytic functions of the phase-space variables, a stability proof can only be obtained in limited cases. An approach has been recently presented by the authors, leading to unconditionally stable simulations for lumped collision models. In that study, discretisation of Hamilton’s equations instead of the usual Newton’s equation of motion yields a numerical scheme that can be proven to be energy conserving. In this paper, the above approach is extended to collisions of distributed objects. Namely, the interaction of an ideal string with a flat barrier is considered. The problem is formulated within the Hamiltonian framework and subsequently discretised. The resulting nonlinearmatrix equation can be shown to possess a unique solution, that enables the update of the algorithm. Energy conservation and thus numerical stability follows in a way similar to the lumped collision model. The existence of an analytic description of this interaction allows the validation of the model’s accuracy. The proposed methodology can be used in sound synthesis applications involving musical instruments where collisions occur either in a confined (e.g. hammer-string interaction, mallet impact) or in a distributed region (e.g. string-bridge or reed-mouthpiece interaction).
Original languageEnglish
Number of pages5
Publication statusPublished - 30 Jun 2014


Dive into the research topics of 'Sound Synthesis for Contact-Driven Musical Instruments via Discretisation of Hamilton's Equations'. Together they form a unique fingerprint.

Cite this