Spatial and genomic data to characterize endemic typhoid transmission

Jillian S Gauld, Franziska Olgemoeller, Eva Heinz, Rose Nkhata, Sithembile Bilima, Alexander M Wailan, Neil Kennedy, Jane Mallewa, Melita A Gordon, Jonathan M Read, Robert S Heyderman, Nicholas R Thomson, Peter J Diggle, Nicholas A Feasey

Research output: Contribution to journalArticlepeer-review

32 Downloads (Pure)


Background: Diverse environmental exposures and risk factors have been implicated in the transmission of Salmonella Typhi, however, the dominant transmission pathways through the environment to susceptible humans remain unknown. Here, we utilize spatial, bacterial genomic, and hydrological data to refine our view of Typhoid transmission in an endemic setting.
Methods: 546 patients presenting to Queen Elizabeth Central Hospital in Blantyre, Malawi with blood culture-confirmed typhoid fever between April 2015 and January 2017 were recruited to a cohort study. The households of a subset of these patients were geolocated, and 256 S. Typhi isolates were whole genome sequenced. Pairwise single nucleotide variant (SNV) distances were incorporated into a geostatistical modeling framework using multidimensional scaling.
Results: Typhoid fever was not evenly distributed across Blantyre, with estimated minimum incidence ranging across the city from less than 15 to over 100 cases/100,000/year. Pairwise SNV distance and physical household distances were significantly correlated (p=0.001). We evaluated the ability of river catchment to explain the spatial patterns of genomics observed, finding that it significantly improved the fit of the model (p=0.003). We also found spatial correlation at a smaller spatial scale, of households living <192 meters apart.
Conclusions: These findings reinforce the emerging view that hydrological systems play a key role in the transmission of typhoid fever. By combining genomic and spatial data, we show how multi-faceted data can be used to identify high incidence areas, understand the connections between them, and inform targeted environmental surveillance, all of which will be critical to shape local and regional typhoid control strategies.
Original languageEnglish
JournalClinical Infectious Diseases
Issue number11
Early online date31 Aug 2021
Publication statusPublished - 01 Jun 2022


  • environmental transmission
  • spatial patterns
  • typhoid fever
  • genomics
  • salmonella typhi


Dive into the research topics of 'Spatial and genomic data to characterize endemic typhoid transmission'. Together they form a unique fingerprint.

Cite this