Abstract
We present direct observations of acoustic waves in warm dense matter. We analyze wave-number- and energy-resolved x-ray spectra taken from warm dense methane created by laser heating a cryogenic liquid jet. X-ray diffraction and inelastic free-electron scattering yield sample conditions of 0.3±0.1 eV and 0.8±0.1 g/cm−3, corresponding to a pressure of ∼13 GPa. Inelastic x-ray scattering was used to observe the collective oscillations of the ions. With a highly improved energy resolution of ∼50 meV, we could clearly distinguish the Brillouin peaks from the quasielastic Rayleigh feature. Data at different wave numbers were utilized to derive a sound speed of 5.9±0.5 km/s, marking a high-temperature data point for methane and demonstrating consistency with Birch's law in this parameter regime. Published by the American Physical Society 2024
Original language | English |
---|---|
Article number | L022029 |
Number of pages | 7 |
Journal | Physical Review Research |
Volume | 6 |
Issue number | 2 |
DOIs | |
Publication status | Published - 02 May 2024 |