Abstract
Generating high-quality multi-particle entanglement between communicating parties is the primary resource in quantum teleportation protocols. To this aim, we show that the natural dynamics
of a single spin chain is able to sustain the generation of two pairs of Bell states –possibly shared
between a sender and a distant receiver– which can in turn enable two-qubit teleportation. In particular, we address a spin- 1
2
chain with XX interactions, connecting two pairs of spins located at
its boundaries, playing the roles of sender and receiver. In the regime where both end pairs are
weakly coupled to the spin chain, it is possible to generate at predefinite times a state that has
vanishing infidelity with the product state of two Bell pairs, thereby providing nearly unit fidelity
of teleportation. We also derive an effective Hamiltonian via a second-order perturbation approach
that faithfully reproduces the dynamics of the full system.
Original language | English |
---|---|
Article number | 052308 |
Number of pages | 9 |
Journal | Physical Review A (Atomic, Molecular, and Optical Physics) |
Volume | 100 |
Early online date | 06 Nov 2019 |
DOIs | |
Publication status | Early online date - 06 Nov 2019 |