Spitzer infrared spectrograph point source classification in the Small Magellanic Cloud

Paul M E Ruffle, F. Kemper*, O. C. Jones, G. C. Sloan, K. E. Kraemer, Paul M. Woods, M. L. Boyer, S. Srinivasan, V. Antoniou, E. Lagadec, M. Matsuura, I. McDonald, J. M. Oliveira, B. A. Sargent, M. Sewilo, R. Szczerba, J. Th Van Loon, K. Volk, A. A. Zijlstra

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

48 Citations (Scopus)

Abstract

The Magellanic Clouds are uniquely placed to study the stellar contribution to dust emission. Individual stars can be resolved in these systems even in the mid-infrared, and they are close enough to allow detection of infrared excess caused by dust. We have searched the Spitzer Space Telescope data archive for all Infrared Spectrograph (IRS) staring-mode observations of the Small Magellanic Cloud (SMC) and found that 209 Infrared Array Camera (IRAC) point sources within the footprint of the Surveying the Agents of Galaxy Evolution in the Small Magellanic Cloud (SAGE-SMC) Spitzer Legacy programme were targeted, within a total of 311 staring-mode observations. We classify these point sources using a decision tree method of object classification, based on infrared spectral features, continuum and spectral energy distribution shape, bolometric luminosity, cluster membership and variability information. We find 58 asymptotic giant branch (AGB) stars, 51 young stellar objects, 4 post-AGB objects, 22 red supergiants, 27 stars (of which 23 are dusty OB stars), 24 planetary nebulae (PNe), 10 Wolf-Rayet stars, 3 H II regions, 3 R Coronae Borealis stars, 1 Blue Supergiant and 6 other objects, including 2 foreground AGB stars. We use these classifications to evaluate the success of photometric classification methods reported in the literature.

Original languageEnglish
Pages (from-to)3504-3536
Number of pages33
JournalMonthly Notices of the Royal Astronomical Society
Volume451
Issue number4
DOIs
Publication statusPublished - 21 Aug 2015

Keywords

  • Dust, extinction
  • H II regions
  • Infrared: stars
  • Magellanic clouds
  • Surveys
  • Techniques: spectroscopic

ASJC Scopus subject areas

  • Space and Planetary Science
  • Astronomy and Astrophysics

Fingerprint

Dive into the research topics of 'Spitzer infrared spectrograph point source classification in the Small Magellanic Cloud'. Together they form a unique fingerprint.

Cite this