STAT3, p38 MAP Kinase and NF-{kappa}B Drive Unopposed Monocyte-dependent Fibroblast MMP-1 Secretion in Tuberculosis.

Cecilia O'Kane, P.T. Elkington, M.D. Jones, L. Caviedes, M. Tovar, R.H. Gilman, G. Stamp, J.S. Friedland

Research output: Contribution to journalArticle

44 Citations (Scopus)


Tissue destruction characterizes infection with Mycobacterium tuberculosis (Mtb). Type I collagen provides the lung's tensile strength, is extremely resistant to degradation, but is cleaved by matrix metalloproteinase (MMP)-1. Fibroblasts potentially secrete quantitatively more MMP-1 than other lung cells. We investigated mechanisms regulating Mtb-induced collagenolytic activity in fibroblasts in vitro and in patients. Lung fibroblasts were stimulated with conditioned media from Mtb-infected monocytes (CoMTb). CoMTb induced sustained increased MMP-1 (74 versus 16 ng/ml) and decreased tissue inhibitor of metalloproteinase (TIMP)-1 (8.6 versus 22.3 ng/ml) protein secretion. CoMTb induced a 2.7-fold increase in MMP-1 promoter activation and a 2.5-fold reduction in TIMP-1 promoter activation at 24 hours (P = 0.01). Consistent with this, TIMP-1 did not co-localize with fibroblasts in patient granulomas. MMP-1 up-regulation and TIMP-1 down-regulation were p38 (but not extracellular signal–regulated kinase or c-Jun N-terminal kinase) mitogen-activated protein kinase–dependent. STAT3 phosphorylation was detected in fibroblasts in vitro and in tuberculous granulomas.STAT3 inhibition reduced fibroblast MMP-1 secretion by 60% (P = 0.046). Deletion of the MMP-1 promoter NF-B–binding site abrogated promoter induction in response to CoMTb. TNF-, IL-1ß, or Oncostatin M inhibition in CoMTb decreased MMP-1 secretion by 65, 63, and 25%, respectively. This cytokine cocktail activated the same signaling pathways in fibroblasts and induced MMP-1 secretion similar to that induced by CoMTb. This study demonstrates in a cellular model and in patients with tuberculosis that in addition to p38 and NF-B, STAT3 has a key role in driving fibroblast-dependent unopposed MMP-1 production that may be key in tissue destruction in patients.
Original languageEnglish
Pages (from-to)465-474
Number of pages10
JournalAmerican Journal of Respiratory Cell and Molecular Biology
Issue number4
Publication statusPublished - 01 Oct 2010

ASJC Scopus subject areas

  • Cell Biology
  • Pulmonary and Respiratory Medicine
  • Molecular Biology
  • Clinical Biochemistry

Fingerprint Dive into the research topics of 'STAT3, p38 MAP Kinase and NF-{kappa}B Drive Unopposed Monocyte-dependent Fibroblast MMP-1 Secretion in Tuberculosis.'. Together they form a unique fingerprint.

Cite this