### Abstract

A theory of strongly interacting Fermi systems of a few particles is developed. At high excit at ion energies (a few times the single-parti cle level spacing) these systems are characterized by an extreme degree of complexity due to strong mixing of the shell-model-based many-part icle basis st at es by the residual two-
body interaction. This regime can be described as many-body quantum chaos. Practically, it occurs when the excitation energy of the system is greater than a few single-particle level spacings near the Fermi energy. Physical examples of such systems are compound nuclei, heavy open shell atoms (e.g. rare earths) and multicharged ions, molecules, clusters and quantum dots in solids. The main quantity of the theory is the strength function which describes spreading of the
eigenstates over many-part icle basis states (determinants) constructed using the shell-model orbital basis. A nonlinear equation for the strength function is derived, which enables one to describe the eigenstates without diagonalization of the Hamiltonian matrix. We show how to use this approach to calculate mean orbital occupation numbers and matrix elements between chaotic eigenstates and introduce typically statistical variable s such as t emperature in an isolated microscopic Fermi system of a few particles.

Original language | English |
---|---|

Pages (from-to) | 2143-2173 |

Number of pages | 31 |

Journal | Philosophical Magazine B |

Volume | 80 |

Issue number | 12 |

DOIs | |

Publication status | Published - Dec 2000 |

### ASJC Scopus subject areas

- Chemical Engineering(all)
- Physics and Astronomy(all)

## Fingerprint Dive into the research topics of 'Statistical theory of finite Fermi systems with chaotic excited eigenstates'. Together they form a unique fingerprint.

## Cite this

Flambaum, V. V., & Gribakin, G. F. (2000). Statistical theory of finite Fermi systems with chaotic excited eigenstates.

*Philosophical Magazine B*,*80*(12), 2143-2173. https://doi.org/10.1080 / 1364281001000069 9