Strain-Tunable Magnetic Moment in Ni-Doped Graphene

Elton J. G. Santos, A. Ayuela, D. Sanchez-Portal

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)
137 Downloads (Pure)

Abstract

Graphene, due to its exceptional properties, is a promising material for nanotechnology applications. In this context, the ability to tune the properties of graphene-based materials and devices with the incorporation of defects and impurities can be of extraordinary importance. Here, we investigate the effect of uniaxial tensile strain on the electronic and magnetic properties of graphene doped with substitutional Ni impurities (Nisub). We have found that, although Nisub defects are nonmagnetic in the relaxed layer, uniaxial strain induces a spin moment in the system. The spin moment increases with the applied strain up to values of 0.3–0.4 μB per Nisub, until a critical strain of ∼6.5% is reached. At this point, a sharp transition to a high-spin state (∼1.9 μB) is observed. This magnetoelastic effect could be utilized to design strain-tunable spin devices based on Ni-doped graphene.
Original languageEnglish
Pages (from-to)1932-7447
Number of pages6
JournalJournal of Physical Chemistry C
Volume116
DOIs
Publication statusPublished - 29 Nov 2012

Fingerprint

Dive into the research topics of 'Strain-Tunable Magnetic Moment in Ni-Doped Graphene'. Together they form a unique fingerprint.

Cite this