Abstract
There is a perception amongst some of those learning computer programming that the principles of object-oriented programming (where behaviour is often encapsulated across multiple class files) can be difficult to grasp, especially when taught through a traditional, didactic ‘talk-and-chalk’ method or in a lecture-based environment.
We propose a non-traditional teaching method, developed for a government funded teaching training project delivered by Queen’s University, we call it bigCode. In this scenario, learners are provided with many printed, poster-sized fragments of code (in this case either Java or C#). The learners sit on the floor in groups and assemble these fragments into the many classes which make-up an object-oriented program.
Early trials indicate that bigCode is an effective method for teaching object-orientation. The requirement to physically organise the code fragments imitates closely the thought processes of a good software developer when developing object-oriented code.
Furthermore, in addition to teaching the principles involved in object-orientation, bigCode is also an extremely useful technique for teaching learners the organisation and structure of individual classes in Java or C# (as well as the organisation of procedural code). The mechanics of organising fragments of code into complete, correct computer programs give the users first-hand practice of this important skill, and as a result they subsequently find it much easier to develop well-structured code on a computer.
Yet, open questions remain. Is bigCode successful only because we have unknowingly predominantly targeted kinesthetic learners? Is bigCode also an effective teaching approach for other forms of learners, such as visual learners? How scalable is bigCode: in its current form can it be used with large class sizes, or outside the classroom?
We propose a non-traditional teaching method, developed for a government funded teaching training project delivered by Queen’s University, we call it bigCode. In this scenario, learners are provided with many printed, poster-sized fragments of code (in this case either Java or C#). The learners sit on the floor in groups and assemble these fragments into the many classes which make-up an object-oriented program.
Early trials indicate that bigCode is an effective method for teaching object-orientation. The requirement to physically organise the code fragments imitates closely the thought processes of a good software developer when developing object-oriented code.
Furthermore, in addition to teaching the principles involved in object-orientation, bigCode is also an extremely useful technique for teaching learners the organisation and structure of individual classes in Java or C# (as well as the organisation of procedural code). The mechanics of organising fragments of code into complete, correct computer programs give the users first-hand practice of this important skill, and as a result they subsequently find it much easier to develop well-structured code on a computer.
Yet, open questions remain. Is bigCode successful only because we have unknowingly predominantly targeted kinesthetic learners? Is bigCode also an effective teaching approach for other forms of learners, such as visual learners? How scalable is bigCode: in its current form can it be used with large class sizes, or outside the classroom?
Original language | English |
---|---|
Publication status | Published - 02 Dec 2015 |
Event | AARE Annual International Conference 2015 - Perth, Australia Duration: 30 Nov 2015 → 03 Dec 2015 |
Conference
Conference | AARE Annual International Conference 2015 |
---|---|
Country/Territory | Australia |
City | Perth |
Period | 30/11/2015 → 03/12/2015 |
Keywords
- TECHNOLOGY
- EDUCATION