Abstract
Confining light in extremely small cavities is crucial in nanophotonics, central to many applications. Employing a unique nanoparticle-on-mirror plasmonic structure and using graphene film as spacer, we create nanoscale cavities with volumes of only a few tens of cubic nanometers. The ultracompact cavity produces extremely strong optical near fields, which facilitate the formation of single carbon quantum dot in the cavity and simultaneously empowers the strong coupling between the excitons of the formed carbon quantum dot and the localized surface plasmons. This is manifested in the optical scattering spectra, showing magnificent Rabi splitting up to 200 meV at ambient conditions. In addition, we demonstrate that the strong coupling is tuneable with light irradiation. This opens new paradigms of investigating the fundamental light emission properties of carbon quantum dots in the quantum regime and paves the way for many significant applications.
Original language | English |
---|---|
Pages (from-to) | 19866 |
Journal | ACS Applied Materials and Interfaces |
Volume | 12 |
Issue number | 2020 |
Early online date | 15 Apr 2020 |
DOIs | |
Publication status | Early online date - 15 Apr 2020 |
Fingerprint
Dive into the research topics of 'Strong coupling of carbon quantum dots in plasmonic nanocavities'. Together they form a unique fingerprint.Student theses
-
The plasmonics of a nanosphere on a mirror substrate
Katzen, J. (Author), Huang, F. (Supervisor), Jul 2019Student thesis: Doctoral Thesis › Doctor of Philosophy
File
Profiles
-
Fumin Huang
- School of Mathematics and Physics - Senior Lecturer
- Centre for Quantum Materials and Technologies (CQMT)
Person: Academic