Successful telescope proposal: An age-activity calibration for old low-mass stars

Katja Poppenhaeger

Research output: Other contribution

Abstract

Low-mass stars are highly interesting targets: we are able to detect planets in their habitable zones, and upcoming searches for biomarkers in exoplanet atmospheres will focus on low-mass star systems due to their ubiquity and proximity. We aim to develop an age-activity calibration for old low-mass stars, using wide binary systems consisting of an M or K dwarf and a white dwarf. The age of the system is determined by the WD cooling time plus its progenitor lifetime, yielding reliable ages in the regime >1 Gyr. For an exploratory sample of 7 systems where we have already derived ages, we propose to perform Chandra ACIS-S observations to determine the X-ray luminosities of the M dwarfs and correlate their stellar activity with age. We ask for a total observing time of 110 ks.
Original languageEnglish
TypeAccepted observing proposal
Publication statusPublished - 01 Sep 2014

Fingerprint

proposals
telescopes
stars
stellar activity
extrasolar planets
proximity
luminosity
cooling
atmospheres
life (durability)
x rays

Cite this

@misc{39f25ee5dcb142188c6c092cab03fb7b,
title = "Successful telescope proposal: An age-activity calibration for old low-mass stars",
abstract = "Low-mass stars are highly interesting targets: we are able to detect planets in their habitable zones, and upcoming searches for biomarkers in exoplanet atmospheres will focus on low-mass star systems due to their ubiquity and proximity. We aim to develop an age-activity calibration for old low-mass stars, using wide binary systems consisting of an M or K dwarf and a white dwarf. The age of the system is determined by the WD cooling time plus its progenitor lifetime, yielding reliable ages in the regime >1 Gyr. For an exploratory sample of 7 systems where we have already derived ages, we propose to perform Chandra ACIS-S observations to determine the X-ray luminosities of the M dwarfs and correlate their stellar activity with age. We ask for a total observing time of 110 ks.",
author = "Katja Poppenhaeger",
year = "2014",
month = "9",
day = "1",
language = "English",
type = "Other",

}

Successful telescope proposal: An age-activity calibration for old low-mass stars. / Poppenhaeger, Katja.

2014, Accepted observing proposal.

Research output: Other contribution

TY - GEN

T1 - Successful telescope proposal: An age-activity calibration for old low-mass stars

AU - Poppenhaeger, Katja

PY - 2014/9/1

Y1 - 2014/9/1

N2 - Low-mass stars are highly interesting targets: we are able to detect planets in their habitable zones, and upcoming searches for biomarkers in exoplanet atmospheres will focus on low-mass star systems due to their ubiquity and proximity. We aim to develop an age-activity calibration for old low-mass stars, using wide binary systems consisting of an M or K dwarf and a white dwarf. The age of the system is determined by the WD cooling time plus its progenitor lifetime, yielding reliable ages in the regime >1 Gyr. For an exploratory sample of 7 systems where we have already derived ages, we propose to perform Chandra ACIS-S observations to determine the X-ray luminosities of the M dwarfs and correlate their stellar activity with age. We ask for a total observing time of 110 ks.

AB - Low-mass stars are highly interesting targets: we are able to detect planets in their habitable zones, and upcoming searches for biomarkers in exoplanet atmospheres will focus on low-mass star systems due to their ubiquity and proximity. We aim to develop an age-activity calibration for old low-mass stars, using wide binary systems consisting of an M or K dwarf and a white dwarf. The age of the system is determined by the WD cooling time plus its progenitor lifetime, yielding reliable ages in the regime >1 Gyr. For an exploratory sample of 7 systems where we have already derived ages, we propose to perform Chandra ACIS-S observations to determine the X-ray luminosities of the M dwarfs and correlate their stellar activity with age. We ask for a total observing time of 110 ks.

M3 - Other contribution

ER -