Suppression of Antenna Backscatter on a Nanosat Using a Resistively Loaded FSS Absorbers

Research output: Contribution to journalArticlepeer-review

108 Downloads (Pure)

Abstract

A very thin microwave absorber which can be integrated into the outermost layer of thermal blankets is proposed as a means to electromagnetically decouple payload antennas from spacecraft platforms. The effectiveness of this concept is evaluated for a critical test case where a linearly polarized dipole antenna working at 10 GHz is placed at three different distances above the surface of  10 cm nanosat mock-up. This scenario is chosen as the dipole will radiate into both half spaces and any reflections from the vehicle on which it is mounted will significantly affect its behaviour. A resistively loaded Frequency Selective Surface (FSS) absorber is employed to suppress the energy contained in the antenna backlobes, and it is shown that the installed performance for all three geometries closely resembles the beam shape in of the antenna in isolation.  Experimental results have been obtained for one arrangement to confirm that the directive gain is increased by 18 dB in the boresight direction.  The  FSS absorber is composed of an array of resistively loaded hexagonal patches which are patterned on a 1.12 mm (λ/25) thick foil backed Polyethylene Terephthalate (PET) sheet to replicate the physical construction of commercially available space blankets.
Original languageEnglish
Pages (from-to)2607 - 2611
Number of pages5
JournalIEEE Antennas and Wireless Propagation Letters
Early online date04 Oct 2019
DOIs
Publication statusEarly online date - 04 Oct 2019

Bibliographical note

Digital Object Identifier: 10.1109/LAWP.2019.2945399
https://ieeexplore.ieee.org/document/8859363

Fingerprint

Dive into the research topics of 'Suppression of Antenna Backscatter on a Nanosat Using a Resistively Loaded FSS Absorbers'. Together they form a unique fingerprint.

Cite this