TY - JOUR
T1 - Tag-Enhanced Dynamic Compositional Neural Network over arbitrary tree structure for sentence representation
AU - Xu, Chunlin
AU - Wu, Shengli
AU - Lin, Zhiwei
AU - Wang, Hui
PY - 2021/11/1
Y1 - 2021/11/1
N2 - Learning the distributed representation of a sentence is a fundamental operation for a variety of natural language processing tasks, such as text classification, machine translation, and text semantic matching. Tree-structured dynamic compositional networks have achieved promising performance in sentence representation due to its ability in capturing the richness of compositionality. However, existing dynamic compositional networks are mostly based on binarized constituency trees which cannot represent the inherent structural information of sentences effectively. Moreover, syntactic tag information, which is demonstrated to be useful in sentence representation, has been rarely exploited in existing dynamic compositional models. In this paper, a novel LSTM structure, ARTree-LSTM, is proposed to handle general constituency trees in which each non-leaf node can have any number of child nodes. Based on ARTree-LSTM, a novel network model, Tag-Enhanced Dynamic Compositional Neural Network (TE-DCNN), is proposed for sentence representation learning, which contains two ARTree-LSTMs, i.e. tag-level ARTree-LSTM and word-level ARTree-LSTM. The tag-level ARTree-LSTM guides the word-level ARTree-LSTM in conducting dynamic composition. Extensive experiments demonstrate that the proposed TE-DCNN achieves state-of-the-art performance on text classification and text semantic matching tasks.
AB - Learning the distributed representation of a sentence is a fundamental operation for a variety of natural language processing tasks, such as text classification, machine translation, and text semantic matching. Tree-structured dynamic compositional networks have achieved promising performance in sentence representation due to its ability in capturing the richness of compositionality. However, existing dynamic compositional networks are mostly based on binarized constituency trees which cannot represent the inherent structural information of sentences effectively. Moreover, syntactic tag information, which is demonstrated to be useful in sentence representation, has been rarely exploited in existing dynamic compositional models. In this paper, a novel LSTM structure, ARTree-LSTM, is proposed to handle general constituency trees in which each non-leaf node can have any number of child nodes. Based on ARTree-LSTM, a novel network model, Tag-Enhanced Dynamic Compositional Neural Network (TE-DCNN), is proposed for sentence representation learning, which contains two ARTree-LSTMs, i.e. tag-level ARTree-LSTM and word-level ARTree-LSTM. The tag-level ARTree-LSTM guides the word-level ARTree-LSTM in conducting dynamic composition. Extensive experiments demonstrate that the proposed TE-DCNN achieves state-of-the-art performance on text classification and text semantic matching tasks.
U2 - 10.1016/j.eswa.2021.115182
DO - 10.1016/j.eswa.2021.115182
M3 - Article
VL - 181
JO - Expert Systems with Applications
JF - Expert Systems with Applications
SN - 0957-4174
M1 - 115182
ER -