TY - JOUR
T1 - Tailored Ni-MgO catalysts: unveiling temperature-driven synergy in CH4-CO2 reforming
AU - Alghamdi, Ahmad M.
AU - Ibrahim, Ahmed A.
AU - Ali, Fekri Abdulraqeb Ahmed
AU - Bamatraf, Nouf A.
AU - Fakeeha, Anis H.
AU - Osman , Ahmed I.
AU - Alreshaidan, Salwa B.
AU - Fadhillah, Farid
AU - Al‐Zahrani, Salma A.
AU - Al-Fatesh, Ahmed S.
PY - 2024/1
Y1 - 2024/1
N2 - This study examines nickel catalysts on two different supports—magnesium oxide (MgO) and modified MgO (with 10 wt.% MOx; M = Ti, Zr, Al)—for their effectiveness in the dry reforming of methane. The reactions were conducted at 700 °C in a tubular microreactor. The study compares the best-performing catalyst with a reference catalyst (5Ni/MgO) by conducting dry reforming of methane at different reaction temperatures. The catalysts are evaluated using surface area, porosity, X-ray diffraction, infrared spectroscopy, transmission electron microscope, thermogravimeter, and temperature-programmed techniques. The 5Ni/MgO + ZrO2 catalyst demonstrates inferior catalytic activity due to insufficient active sites. On the other hand, the 5Ni/MgO + TiO2 catalyst shows limited catalytic excellence due to excessive coke deposits, which are six times higher than other catalysts. The 5Ni/MgO and 5Ni/MgO + Al2O3 catalysts have the richest basic and acidic profiles, respectively. The 5Ni/MgO + Al2O3 catalyst is superior to other catalysts due to its stronger metal–support interaction on the expanded surface and the efficient diffusion of carbon on its less crystalline surface. At 700 °C, this catalyst achieves 73% CH4 conversion, and at 800 °C, it reaches 83% conversion. This study emphasizes the crucial role of the reaction temperature in reducing carbon deposition and enhancing the efficiency of the reforming process.
AB - This study examines nickel catalysts on two different supports—magnesium oxide (MgO) and modified MgO (with 10 wt.% MOx; M = Ti, Zr, Al)—for their effectiveness in the dry reforming of methane. The reactions were conducted at 700 °C in a tubular microreactor. The study compares the best-performing catalyst with a reference catalyst (5Ni/MgO) by conducting dry reforming of methane at different reaction temperatures. The catalysts are evaluated using surface area, porosity, X-ray diffraction, infrared spectroscopy, transmission electron microscope, thermogravimeter, and temperature-programmed techniques. The 5Ni/MgO + ZrO2 catalyst demonstrates inferior catalytic activity due to insufficient active sites. On the other hand, the 5Ni/MgO + TiO2 catalyst shows limited catalytic excellence due to excessive coke deposits, which are six times higher than other catalysts. The 5Ni/MgO and 5Ni/MgO + Al2O3 catalysts have the richest basic and acidic profiles, respectively. The 5Ni/MgO + Al2O3 catalyst is superior to other catalysts due to its stronger metal–support interaction on the expanded surface and the efficient diffusion of carbon on its less crystalline surface. At 700 °C, this catalyst achieves 73% CH4 conversion, and at 800 °C, it reaches 83% conversion. This study emphasizes the crucial role of the reaction temperature in reducing carbon deposition and enhancing the efficiency of the reforming process.
U2 - 10.3390/catal14010033
DO - 10.3390/catal14010033
M3 - Article
SN - 2073-4344
VL - 14
JO - Catalysts
JF - Catalysts
IS - 1
M1 - 33
ER -