Targeting the PREX2/RAC1/PI3Kβ signaling axis confers sensitivity to clinically relevant therapeutic approaches in melanoma

Catriona A. Ford, Dana Koludrovic, Patricia P. Centeno, Mona Foth, Elpida Tsonou, Nikola Vlahov, Nathalie Sphyris, Kathryn Gilroy, Courtney Bull, Colin Nixon, Bryan Serrels, Alison F. Munro, John C. Dawson, Neil O. Carragher, Valeria Pavet, David C. Hornigold, Philip D. Dunne, Julian Downward, Heidi C. Welch, Simon T. BarryOwen J. Sansom, Andrew D. Campbell

Research output: Contribution to journalArticlepeer-review

Abstract

Metastatic melanoma remains a major clinical challenge. Large-scale genomic sequencing of melanoma has identified bona fide activating mutations in RAC1, which are associated with resistance to BRAF-targeting therapies. Targeting the RAC1-GTPase pathway, including the upstream activator PREX2 and the downstream effector PI3Kβ, could be a potential strategy for overcoming therapeutic resistance, limiting melanoma recurrence, and suppressing metastatic progression. Here, we used genetically engineered mouse models and patient-derived BRAFV600E-driven melanoma cell lines to dissect the role of PREX2 in melanomagenesis and response to therapy. While PREX2 was dispensable for the initiation and progression of melanoma, its loss conferred sensitivity to clinically relevant therapeutics targeting the MAPK pathway. Importantly, genetic and pharmacological targeting of PI3Kβ phenocopied PREX2 deficiency, sensitizing model systems to therapy. These data reveal a druggable PREX2/RAC1/PI3Kβ signaling axis in BRAF-mutant melanoma that could be exploited clinically.
Original languageEnglish
JournalCancer Research
Early online date05 Dec 2024
DOIs
Publication statusEarly online date - 05 Dec 2024

Keywords

  • PREX2/RAC1/PI3Kβ
  • PREX2/RAC1/PI3Kβ signaling axis
  • clinically relevant therapeutic approaches
  • melanoma

Fingerprint

Dive into the research topics of 'Targeting the PREX2/RAC1/PI3Kβ signaling axis confers sensitivity to clinically relevant therapeutic approaches in melanoma'. Together they form a unique fingerprint.

Cite this