The κ− μ / Inverse Gamma Fading Model

Seong Ki Yoo, Simon L. Cotton, Paschalis Sofotasios, Michail Matthaiou, Mikko Valkama, George K. Karagiannidis

Research output: Chapter in Book/Report/Conference proceedingConference contribution

33 Citations (Scopus)
628 Downloads (Pure)

Abstract

Statistical distributions have been extensively used in modeling fading effects in conventional and modern wireless communications. In the present work, we propose a novel κ − µ composite shadowed fading model, which is based on the valid assumption that the mean signal power follows the inverse gamma distribution instead of the lognormal or commonly used gamma distributions. This distribution has a simple relationship with the gamma distribution, but most importantly, its semi heavy-tailed characteristics constitute it suitable for applications relating to modeling of shadowed fading. Furthermore, the derived probability density function of the κ − µ / inverse gamma composite distribution admits a rather simple algebraic representation that renders it convenient to handle both analytically and numerically. The validity and utility of this fading model are demonstrated by means of modeling the fading effects encountered in body centric communications channels, which have been known to be susceptible to the shadowing effect. To this end, extensive comparisons are provided between theoretical and respective real-time measurement results. It is shown that these comparisons exhibit accurate fitting of the new model for various measurement set ups that correspond to realistic communication scenarios.
Original languageEnglish
Title of host publication2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)
DOIs
Publication statusPublished - Sept 2015
Event2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) - Hong Kong, Hong Kong
Duration: 30 Aug 201502 Sept 2015

Conference

Conference2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)
Country/TerritoryHong Kong
CityHong Kong
Period30/08/201502/09/2015

Fingerprint

Dive into the research topics of 'The κ− μ / Inverse Gamma Fading Model'. Together they form a unique fingerprint.

Cite this