The Atmospheric Response to High Nonthermal Electron-beam Fluxes in Solar Flares. II. Hydrogen-broadening Predictions for Solar Flare Observations with the Daniel K. Inouye Solar Telescope

Adam F. Kowalski*, Joel C. Allred, Mats Carlsson, Graham S. Kerr, Pier-Emmanuel Tremblay, Kosuke Namekata, David Kuridze, Han Uitenbroek

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Downloads (Pure)

Abstract

Redshifted components of chromospheric emission lines in the hard X-ray impulsive phase of solar flares have recently been studied through their 30 s evolution with the high resolution of the Interface Region Imaging Spectrograph. Radiative-hydrodynamic flare models show that these redshifts are generally reproduced by electron-beam-generated chromospheric condensations. The models produce large ambient electron densities, and the pressure broadening of the hydrogen Balmer series should be readily detected in observations. To accurately interpret the upcoming spectral data of flares with the DKIST, we incorporate nonideal, nonadiabatic line-broadening profiles of hydrogen into the RADYN code. These improvements allow time-dependent predictions for the extreme Balmer line wing enhancements in solar flares. We study two chromospheric condensation models, which cover a range of electron-beam fluxes (1 − 5 × 1011 erg s−1 cm−2) and ambient electron densities (1 − 60 × 1013 cm−3) in the flare chromosphere. Both models produce broadening and redshift variations within 10 s of the onset of beam heating. In the chromospheric condensations, there is enhanced spectral broadening due to large optical depths at Hα, Hβ, and Hγ, while the much lower optical depth of the Balmer series H12−H16 provides a translucent window into the smaller electron densities in the beam-heated layers below the condensation. The wavelength ranges of typical DKIST/ViSP spectra of solar flares will be sufficient to test the predictions of extreme hydrogen wing broadening and accurately constrain large densities in chromospheric condensations.
Original languageEnglish
Article number190
JournalThe Astrophysical Journal
Volume928
Issue number2
DOIs
Publication statusPublished - 01 Apr 2022

Keywords

  • 360
  • The Sun and the Heliosphere

Fingerprint

Dive into the research topics of 'The Atmospheric Response to High Nonthermal Electron-beam Fluxes in Solar Flares. II. Hydrogen-broadening Predictions for Solar Flare Observations with the Daniel K. Inouye Solar Telescope'. Together they form a unique fingerprint.

Cite this