The Computational Complexity of Dominance and Consistency in CP-Nets

Judy Goldsmith, Jérôme Lang, Miroslaw Truszczyński, Nic Wilson

Research output: Contribution to journalArticle

88 Citations (Scopus)
166 Downloads (Pure)

Abstract

We investigate the computational complexity of testing dominance and consistency in CP-nets. Previously, the complexity of dominance has been determined for restricted classes in which the dependency graph of the CP-net is acyclic. However, there are preferences of interest that define cyclic dependency graphs; these are modeled with general CP-nets. In our main results, we show here that both dominance and consistency for general CP-nets are PSPACE-complete. We then consider the concept of strong dominance, dominance equivalence and dominance incomparability, and several notions of optimality, and identify the complexity of the corresponding decision problems. The reductions used in the proofs are from STRIPS planning, and thus reinforce the earlier established connections between both areas.
Original languageEnglish
Pages (from-to)403-432
Number of pages30
JournalJournal of Artificial Intelligence Research
Volume33
DOIs
Publication statusPublished - 2008

Fingerprint Dive into the research topics of 'The Computational Complexity of Dominance and Consistency in CP-Nets'. Together they form a unique fingerprint.

  • Cite this