Abstract
Ever since their detection two decades ago, standing kink oscillations in coronal loops
have been extensively studied both observationally and theoretically. Almost all driven
coronal loop oscillations (e.g., by flares) are observed to damp through time often with
Gaussian or exponential profiles. Intriguingly, however, it has been shown theoretically
that the amplitudes of some oscillations could be modified from Gaussian or exponential
profiles if cooling is present in the coronal loop systems. Indeed, in some cases
the oscillation amplitude can even increase through time. In this article, we analyse
a flare-driven coronal loop oscillation observed by the Solar Dynamics Observatory’s
Atmospheric Imaging Assembly (SDO/AIA) in order to investigate whether models of
cooling can explain the amplitude profile of the oscillation and whether hints of cooling
can be found in the intensity evolution of several SDO/AIA filters. During the oscillation
of this loop system, the kink mode amplitude appears to differ from a typical Gaussian
or exponential profile with some hints being present that the amplitude increases. The
application of cooling coronal loop modeling allowed us to estimate the density ratio
between the loop and the background plasma, with a ratio of between 2.05 and 2.35
being returned. Overall, our results indicate that consideration of the thermal evolution
of coronal loop systems can allow us to better describe oscillations in these structures
and return more accurate estimates of the physical properties of the loops (e.g., density,
scale height, magnetic field strength).
Original language | English |
---|---|
Article number | 45 |
Number of pages | 9 |
Journal | Frontiers in Astronomy and Space Sciences |
Volume | 6 |
DOIs | |
Publication status | Published - 27 Jun 2019 |