The electrochemical reduction of hydrogen sulfide on platinum in several room temperature ionic liquids

A.M. O'Mahony, D.S. Silvester, Leigh Aldous, Christopher Hardacre, R.G. Compton

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)

Abstract

The electrochemical reduction of I atm hydrogen sulfide gas (H2S) has been studied at a platinum microelectrode (10 mu m diameter) in five room temperature ionic liquids (RTILs): [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3] and [C(4)mim]][PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [OTf](-) = trifluoromethlysulfonate, [NO3](-) = nitrate, and [PF6](-) = hexafluorophosphate). In all five RTILs, a chemically irreversible reduction peak was observed on the reductive sweep, followed by one or two oxidative peaks on the reverse scan. The oxidation peaks were assigned to the oxidation of SH- and adsorbed hydrogen. In addition, a small reductive peak was observed prior to the large wave in [C(2)mim]][NTf2] only, which may be due to the reduction of a sulfur impurity in the gas. Potential-step chronoamperometry was carried out on the reduction peak of H2S, revealing diffusion coefficients of 3.2, 4.6, 2.4, 2.7, and 3.1 x 10(-11) m(2) s(-1) and solubilities of 529, 236, 537, 438, and 230 mM in [C(2)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf], [C(4)mim][NO3], and [C(4)mim]][PF6], respectively. The solubilities of H2S in RTILs are much higher than those reported in conventional molecular solvents, suggesting that RTILs may be very favorable gas sensing media for H2S detection.
Original languageEnglish
Pages (from-to)7725-7730
Number of pages6
JournalJournal of Physical Chemistry C
Volume112 (20)
Issue number20
DOIs
Publication statusPublished - 22 Apr 2008

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • General Energy
  • Electronic, Optical and Magnetic Materials
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'The electrochemical reduction of hydrogen sulfide on platinum in several room temperature ionic liquids'. Together they form a unique fingerprint.

Cite this