The neutralising and stimulatory effects of antimicrobial peptide LL-37 in human gingival fibroblasts

MJ Lappin*, M. Dellett, KI Mills, FT Lundy, CR Irwin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)
37 Downloads (Pure)

Abstract

Objectives
To investigate the effects of LL-37, a broad spectrum antimicrobial peptide expressed in periodontal tissues, on human gingival fibroblast responsiveness to microbial challenge and to explore the direct effects of LL-37 on human gingival fibroblasts.

Design
The effect of LL-37 on bacterial lipopolysaccharide-induced expression of Interleukin (IL-6) and chemokine C-X-C motif ligand (CXCL) 8 was determined by enzyme linked immunosorbent assay (ELISA). LL-37′s influence on bacterial lipopolysaccharide-induced IκBα degradation was investigated by western blot. DNA microarray analysis initially determined the direct effects of LL-37 on gene expression, these findings were subsequently confirmed by quantitative polymerase chain reaction and ELISA analysis of selected genes.

Results
Bacterial lipopolysaccharide-induced IL-6 and CXCL8 production by human gingival fibroblasts was significantly reduced in the presence of LL-37 at concentrations in the range of 1–10 µg/ml. LL-37 led to a reduction in lipopolysaccharide-induced IκBα degradation by Escherichia coli lipopolysaccharide and Porphyromonas gingivalis lipopolysaccharide (10 µg/ml). LL-37 (50 µg/ml) significantly altered the gene expression of 367 genes in human gingival fibroblasts by at least 2-fold. CXCL1, CXCL2, CXCL3, Interleukin-24 (IL-24), CXCL8, Chemokine (C-C motif) Ligand 2, and Suppressor of Cytokine Signalling 3 mRNA were significantly upregulated by LL-37. LL-37 also significantly stimulated expression of CXCL8, hepatocyte growth factor and CXCL1 at the protein level.

Conclusion
LL-37 plays an important regulatory role in the immunomodulatory activity of gingival fibroblasts by inhibiting lipopolysaccharide -induced expression of inflammatory cytokines and directly stimulating the expression of an array of bioactive molecules involved in inflammation and repair.

Original languageEnglish
Article number105634
Number of pages9
JournalArchives of Oral Biology
Volume148
Early online date09 Feb 2023
DOIs
Publication statusPublished - Apr 2023

Fingerprint

Dive into the research topics of 'The neutralising and stimulatory effects of antimicrobial peptide LL-37 in human gingival fibroblasts'. Together they form a unique fingerprint.

Cite this