The potential of electron beam radiation for simultaneous surface modification and bioresorption control of PLLA

Marie-Louise Cairns, Glenn R. Dickson, John F. Orr, David Farrar, Christopher Hardacre, Jacinto Sa, Patrick Lemoine, Muhammad Zeeshan Mughal, Fraser J. Buchanan

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Bioresorbable polymers have been widely investigated as materials exhibiting significant potential for successful application in the fields of tissue engineering and drug delivery. Further to the ability to control degradation, surface engineering of polymers has been highlighted as a key method central to their development. Previous work has demonstrated the ability of electron beam (e-beam) technology to control the degradation profiles and bioresorption of a number of commercially relevant bioresorbable polymers (poly-l-lactic acid (PLLA), Llactide/DL-lactide co-polymer (PLDL) and poly(lactic-co-glycolic acid (PLGA)). This work investigates the further potential of ebeam technology to impart added biofunctionality through the manipulation of polymer (PLLA) surface properties. PLLA samples were subjected to e-beam treatments in air, with varying beam energies and doses. Surface characterization was then performed using contact angle analysis, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy. Results demonstrated a significant increase in surface wettability post e-beam treatment. In correlation with this, XPS data showed the introduction of oxygen-containing functional groups to the surface of PLLA. Raman spectroscopy indicated chain scission in the near surface region of PLLA (as predicted). However, e-beam effects on surface properties were not shown to be dependent on beam energy or dose. E-beam irradiation did not seem to affect the surface roughness of PLLA as a direct consequence of the treatment.
Original languageEnglish
Pages (from-to)2223-2229
Number of pages7
JournalJournal of Biomedical Materials Research Part A
Volume100A
Issue number9
Early online date10 Apr 2012
DOIs
Publication statusPublished - Sep 2012

ASJC Scopus subject areas

  • Biomedical Engineering
  • Biomaterials
  • Ceramics and Composites
  • Metals and Alloys

Fingerprint Dive into the research topics of 'The potential of electron beam radiation for simultaneous surface modification and bioresorption control of PLLA'. Together they form a unique fingerprint.

  • Cite this