The propagation of coherent waves across multiple solar magnetic pores

S. D. T. Grant*, D. B. Jess, M. Stangalini, S. Jafarzadeh, V. Fedun, G. Verth, P. H. Keys, S. P. Rajaguru, H. Uitenbroek, C. D. MacBride, W. Bate, C. A. Gilchrist-Millar

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)
26 Downloads (Pure)

Abstract

Solar pores are efficient magnetic conduits for propagating magnetohydrodynamic wave energy into the outer regions of the solar atmosphere. Pore observations often contain isolated and/or unconnected structures, preventing the statistical examination of wave activity as a function of atmospheric height. Here, using high resolution observations acquired by the Dunn Solar Telescope, we examine photospheric and chromospheric wave signatures from a unique collection of magnetic pores originating from the same decaying sunspot. Wavelet analysis of high cadence photospheric imaging reveals the ubiquitous presence of slow sausage mode oscillations, coherent across all photospheric pores through comparisons of intensity and area fluctuations, producing statistically significant in-phase relationships. The universal nature of these waves allowed an investigation of whether the wave activity remained coherent as they propagate. Utilizing bi-sector Doppler velocity analysis of the Ca II 8542 Å line, alongside comparisons of the modeled spectral response function, we find fine-scale 5 mHz power amplification as the waves propagate into the chromosphere. Phase angles approaching zero degrees between co-spatial bi-sectors spanning different line depths indicate standing sausage modes following reflection against the transition region boundary. Fourier analysis of chromospheric velocities between neighboring pores reveals the annihilation of the wave coherency observed in the photosphere, with examination of the intensity and velocity signals from individual pores indicating they behave as fractured wave guides, rather than monolithic structures. Importantly, this work highlights that wave morphology with atmospheric height is highly complex, with vast differences observed at chromospheric layers, despite equivalent wave modes being introduced into similar pores in the photosphere.

Original languageEnglish
Article number143
Number of pages17
JournalThe Astrophysical Journal
Volume938
Issue number2
DOIs
Publication statusPublished - 20 Oct 2022

Fingerprint

Dive into the research topics of 'The propagation of coherent waves across multiple solar magnetic pores'. Together they form a unique fingerprint.

Cite this