Abstract
We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the 56Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical- infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M env ∼ 20 M ⊙, progenitor radius R ∼ 3 × 1013 cm (∼430 R⊙), explosion energy E ∼ 1.5 foe, and initial 56Ni mass ∼0.06 M⊙. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M ⊙of the Type IIP events.
Original language | English |
---|---|
Article number | 139 |
Number of pages | 18 |
Journal | Astrophysical Journal |
Volume | 787 |
Issue number | 2 |
DOIs | |
Publication status | Published - 01 Jun 2014 |
Keywords
- galaxies: individual (M95)
- supernovae: general
- supernovae: individual (2012aw)
ASJC Scopus subject areas
- Space and Planetary Science
- Astronomy and Astrophysics