The VLT-FLAMES Survey of massive stars: Rotation and nitrogen enrichment as the key to understanding massive star evolution

Ian Hunter, I. Brott, D.J. Lennon, N. Langer, Philip Dufton, Carrie Trundle, Stephen Smartt, A. De Koter, C.J. Evans, Robert Ryans

Research output: Contribution to journalArticlepeer-review

126 Citations (Scopus)
6 Downloads (Pure)

Abstract

Rotation has become an important element in evolutionary models of massive stars, specifically via the prediction of rotational mixing. Here we study a sample of stars, including rapid rotators, to constrain such models and use nitrogen enrichments as a probe of the mixing process. Chemical compositions (C, N, O, Mg, and Si) have been estimated for 135 early B-type stars in the Large Magellanic Cloud with projected rotational velocities up to similar to 300 km s(-1) using a non-LTE TLUSTY model atmosphere grid. Evolutionary models, including rotational mixing, have been generated attempting to reproduce these observations by adjusting the overshooting and rotational mixing parameters and produce reasonable agreement with 60% of our core hydrogen burning sample. We find (excluding known binaries) a significant population of highly nitrogen-enriched intrinsic slow rotators (nu sin i less than or similar to 50 km s(-1)) incompatible with our models (similar to 20% of the sample). Furthermore, while we find fast rotators with enrichments in agreement with the models, the observation of evolved (dex) fast rotators (log g < 3.7 dex) that are relatively unenriched (a further similar to 20% of the sample) challenges the concept of rotational mixing. We also find that 70% of our blue supergiant sample cannot have evolved directly from the hydrogen-burning main sequence. We are left with a picture where invoking binarity and perhaps fossil magnetic fields is required to understand the surface properties of a population of massive main- sequence stars.
Original languageEnglish
Pages (from-to)L29- L32
Number of pages4
JournalAstrophysical Journal
Volume676
Issue number1
Early online date03 Mar 2008
DOIs
Publication statusPublished - 20 Mar 2008

ASJC Scopus subject areas

  • Space and Planetary Science
  • Astronomy and Astrophysics

Fingerprint Dive into the research topics of 'The VLT-FLAMES Survey of massive stars: Rotation and nitrogen enrichment as the key to understanding massive star evolution'. Together they form a unique fingerprint.

Cite this