Thermal and radiation driving can produce observable disc winds in hard-state X-ray binaries

Nick Higginbottom, Christian Knigge, Stuart A. Sim, Knox S. Long, James H. Matthews, Henrietta A. Hewitt, Edward J. Parkinson, Sam W. Mangham

Research output: Contribution to journalArticlepeer-review

5 Downloads (Pure)

Abstract

X-ray signatures of outflowing gas have been detected in several accreting black hole binaries, always in the soft state. A key question raised by these observations is whether these winds might also exist in the hard state. Here, we carry out the first full-frequency radiation hydrodynamic simulations of luminous ({L = 0.5 L_{ Edd}}) black hole X-ray binary systems in both the hard and the soft state, with realistic spectral energy distributions (SEDs). Our simulations are designed to describe X-ray transients near the peak of their outburst, just before and after the hard-to-soft state transition. At these luminosities, it is essential to include radiation driving, and we include not only electron scattering, but also photoelectric and line interactions. We find powerful outflows with {\dot{M}_{ wind} ≃ 2 \dot{M}_{ acc}} are driven by thermal and radiation pressure in both hard and soft states. The hard-state wind is significantly faster and carries approximately 20 times as much kinetic energy as the soft-state wind. However, in the hard state the wind is more ionized, and so weaker X-ray absorption lines are seen over a narrower range of viewing angles. Nevertheless, for inclinations ≳80°, blueshifted wind-formed Fe XXV and Fe XXVI features should be observable even in the hard state. Given that the data required to detect these lines currently exist for only a single system in a luminous hard state - the peculiar GRS 1915+105 - we urge the acquisition of new observations to test this prediction. The new generation of X-ray spectrometers should be able to resolve the velocity structure.
Original languageEnglish
Pages (from-to)5271-5279
JournalMonthly Notices of the Royal Astronomical Society
Volume492
Issue number4
DOIs
Publication statusPublished - 25 Jan 2020
Externally publishedYes

Keywords

  • accretion
  • accretion discs
  • hydrodynamics
  • methods: numerical
  • stars: winds outflows
  • X-rays: binaries

Fingerprint Dive into the research topics of 'Thermal and radiation driving can produce observable disc winds in hard-state X-ray binaries'. Together they form a unique fingerprint.

Cite this