Transcriptional variation and divergence of host-finding behaviour in Steinernema carpocapsae infective juveniles

Neil D Warnock, Deborah Cox, Ciaran McCoy, Robert Morris, Johnathan J Dalzell

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)
133 Downloads (Pure)


BACKGROUND: Steinernema carpocapsae is an entomopathogenic nematode that employs nictation and jumping behaviours to find potential insect hosts. Here we aimed to investigate the transcriptional basis of variant host-finding behaviours in the infective juvenile (IJ) stage of three S. carpocapsae strains (ALL, Breton and UK1), with a focus on neuronal genes known to influence behaviour in other nematode species. Identifying gene expression changes that correlate with variant host-finding behaviours will further our understanding of nematode biology.

RESULTS: RNA-seq analysis revealed that whilst up to 28% of the S. carpocapsae transcriptome was differentially expressed (P < 0.0001) between strains, remarkably few of the most highly differentially expressed genes (> 2 log2 fold change, P < 0.0001) were from neuronal gene families. S. carpocapsae Breton displays increased chemotaxis toward the laboratory host Galleria mellonella, relative to the other strains. This correlates with the up-regulation of four srsx chemosensory GPCR genes, and a sodium transporter gene, asic-2, relative to both ALL and UK1 strains. The UK1 strain exhibits a decreased nictation phenotype relative to ALL and Breton strains, which correlates with co-ordinate up-regulation of neuropeptide like protein 36 (nlp-36), and down-regulation of an srt family GPCR gene, and a distinct asic-2-like sodium channel paralogue. To further investigate the link between transcriptional regulation and behavioural variation, we sequenced microRNAs across IJs of each strain. We have identified 283 high confidence microRNA genes, yielding 321 predicted mature microRNAs in S. carpocapsae, and find that up to 36% of microRNAs are differentially expressed (P < 0.0001) between strains. Many of the most highly differentially expressed microRNAs (> 2 log2 fold, P < 0.0001) are predicted to regulate a variety of neuronal genes that may contribute to variant host-finding behaviours. We have also found evidence for differential gene isoform usage between strains, which alters predicted microRNA interactions, and could contribute to the diversification of behaviour.

CONCLUSIONS: These data provide insight to the transcriptional basis of behavioural variation in S. carpocapsae, supporting efforts to understand the molecular basis of complex behaviours in nematodes.

Original languageEnglish
Pages (from-to)884
JournalBMC Genomics
Issue number1
Publication statusPublished - 21 Nov 2019


Dive into the research topics of 'Transcriptional variation and divergence of host-finding behaviour in Steinernema carpocapsae infective juveniles'. Together they form a unique fingerprint.

Cite this