Tumor Cell Dormancy and Reactivation in Bone: Skeletal Biology and Therapeutic Opportunities

Niall M Byrne, Matthew A Summers, Michelle M McDonald

Research output: Contribution to journalReview article

19 Downloads (Pure)

Abstract

In the advanced stages of many cancers, tumor cells disseminate from the primary site and colonize distant locations such as the skeleton. These disseminated tumor cells colonizing bone can evade treatments and survive for prolonged periods in a dormant state before becoming reactivated to form overt metastases. The precise interactions between tumor cells and the bone microenvironment that promote survival, dormancy, and reactivation are currently unknown; as a result, bone metastases remain incurable. In this review we discuss the unique cellular and microenvironmental features of endosteal bone that tumor cells engage with to persist and survive, and ultimately reactivate and proliferate. Specifically, we provide a detailed summary of current perspectives on the processes of tumor cell colonization of the skeleton, and the endosteal bone cells as critical controllers of the dormant cancer cell phenotype, as well as relevant microenvironmental effects such as hypoxia. Evidence for the role of the osteoclast in controlling dormant cancer cell reactivation in bone is highlighted, preceding a discussion of therapeutics targeting the bone microenvironment, including anti-RANK ligand and bisphosphonate therapies and their potential utility in preventing tumor cell reactivation in addition to protecting bone from tumor-induced destruction. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

Original languageEnglish
Article numbere10125
Number of pages8
JournalJBMR plus
Volume3
Issue number3
DOIs
Publication statusPublished - Mar 2019

Fingerprint

Bone and Bones
Neoplasms
Therapeutics
Skeleton
Neoplasm Metastasis
RANK Ligand
Cellular Microenvironment
Diphosphonates
Osteoclasts
Phenotype

Cite this

Byrne, Niall M ; Summers, Matthew A ; McDonald, Michelle M. / Tumor Cell Dormancy and Reactivation in Bone: Skeletal Biology and Therapeutic Opportunities. In: JBMR plus. 2019 ; Vol. 3, No. 3.
@article{288b18d579eb43e7a04efadf049b7d34,
title = "Tumor Cell Dormancy and Reactivation in Bone: Skeletal Biology and Therapeutic Opportunities",
abstract = "In the advanced stages of many cancers, tumor cells disseminate from the primary site and colonize distant locations such as the skeleton. These disseminated tumor cells colonizing bone can evade treatments and survive for prolonged periods in a dormant state before becoming reactivated to form overt metastases. The precise interactions between tumor cells and the bone microenvironment that promote survival, dormancy, and reactivation are currently unknown; as a result, bone metastases remain incurable. In this review we discuss the unique cellular and microenvironmental features of endosteal bone that tumor cells engage with to persist and survive, and ultimately reactivate and proliferate. Specifically, we provide a detailed summary of current perspectives on the processes of tumor cell colonization of the skeleton, and the endosteal bone cells as critical controllers of the dormant cancer cell phenotype, as well as relevant microenvironmental effects such as hypoxia. Evidence for the role of the osteoclast in controlling dormant cancer cell reactivation in bone is highlighted, preceding a discussion of therapeutics targeting the bone microenvironment, including anti-RANK ligand and bisphosphonate therapies and their potential utility in preventing tumor cell reactivation in addition to protecting bone from tumor-induced destruction. {\circledC} 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.",
author = "Byrne, {Niall M} and Summers, {Matthew A} and McDonald, {Michelle M}",
year = "2019",
month = "3",
doi = "10.1002/jbm4.10125",
language = "English",
volume = "3",
journal = "JBMR plus",
issn = "2473-4039",
number = "3",

}

Tumor Cell Dormancy and Reactivation in Bone: Skeletal Biology and Therapeutic Opportunities. / Byrne, Niall M; Summers, Matthew A; McDonald, Michelle M.

In: JBMR plus, Vol. 3, No. 3, e10125, 03.2019.

Research output: Contribution to journalReview article

TY - JOUR

T1 - Tumor Cell Dormancy and Reactivation in Bone: Skeletal Biology and Therapeutic Opportunities

AU - Byrne, Niall M

AU - Summers, Matthew A

AU - McDonald, Michelle M

PY - 2019/3

Y1 - 2019/3

N2 - In the advanced stages of many cancers, tumor cells disseminate from the primary site and colonize distant locations such as the skeleton. These disseminated tumor cells colonizing bone can evade treatments and survive for prolonged periods in a dormant state before becoming reactivated to form overt metastases. The precise interactions between tumor cells and the bone microenvironment that promote survival, dormancy, and reactivation are currently unknown; as a result, bone metastases remain incurable. In this review we discuss the unique cellular and microenvironmental features of endosteal bone that tumor cells engage with to persist and survive, and ultimately reactivate and proliferate. Specifically, we provide a detailed summary of current perspectives on the processes of tumor cell colonization of the skeleton, and the endosteal bone cells as critical controllers of the dormant cancer cell phenotype, as well as relevant microenvironmental effects such as hypoxia. Evidence for the role of the osteoclast in controlling dormant cancer cell reactivation in bone is highlighted, preceding a discussion of therapeutics targeting the bone microenvironment, including anti-RANK ligand and bisphosphonate therapies and their potential utility in preventing tumor cell reactivation in addition to protecting bone from tumor-induced destruction. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

AB - In the advanced stages of many cancers, tumor cells disseminate from the primary site and colonize distant locations such as the skeleton. These disseminated tumor cells colonizing bone can evade treatments and survive for prolonged periods in a dormant state before becoming reactivated to form overt metastases. The precise interactions between tumor cells and the bone microenvironment that promote survival, dormancy, and reactivation are currently unknown; as a result, bone metastases remain incurable. In this review we discuss the unique cellular and microenvironmental features of endosteal bone that tumor cells engage with to persist and survive, and ultimately reactivate and proliferate. Specifically, we provide a detailed summary of current perspectives on the processes of tumor cell colonization of the skeleton, and the endosteal bone cells as critical controllers of the dormant cancer cell phenotype, as well as relevant microenvironmental effects such as hypoxia. Evidence for the role of the osteoclast in controlling dormant cancer cell reactivation in bone is highlighted, preceding a discussion of therapeutics targeting the bone microenvironment, including anti-RANK ligand and bisphosphonate therapies and their potential utility in preventing tumor cell reactivation in addition to protecting bone from tumor-induced destruction. © 2018 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

U2 - 10.1002/jbm4.10125

DO - 10.1002/jbm4.10125

M3 - Review article

C2 - 30918917

VL - 3

JO - JBMR plus

JF - JBMR plus

SN - 2473-4039

IS - 3

M1 - e10125

ER -