Abstract
Metallic transition metal dichalcogenides (TMDs)1-8 are good catalysts for the hydrogen evolution reaction (HER). The overpotential and Tafel slope values of metallic phases and edges9 of two-dimensional (2D) TMDs approach those of Pt. However, the overall current density of 2D TMD catalysts remains orders of magnitude lower (~10-100 mA cm-2) than industrial Pt and Ir electrolysers (>1,000 mA cm-2)10,11. Here, we report the synthesis of the metallic 2H phase of niobium disulfide with additional niobium (2H Nb1+xS2, where x is ~0.35)12 as a HER catalyst with current densities of >5,000 mA cm-2 at ~420 mV versus a reversible hydrogen electrode. We find the exchange current density at 0 V for 2H Nb1.35S2 to be ~0.8 mA cm-2, corresponding to a turnover frequency of ~0.2 s-1. We demonstrate an electrolyser based on a 2H Nb1+xS2 cathode that can generate current densities of 1,000 mA cm-2. Our theoretical results reveal that 2H Nb1+xS2 with Nb-terminated surface has free energy for hydrogen adsorption that is close to thermoneutral, facilitating HER. Therefore, 2H Nb1+xS2 could be a viable catalyst for practical electrolysers.
Original language | English |
---|---|
Pages (from-to) | 1309 |
Journal | Nature Materials |
Volume | 18 |
Issue number | 2019 |
DOIs | |
Publication status | Published - 26 Aug 2019 |
Fingerprint
Dive into the research topics of 'Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution'. Together they form a unique fingerprint.Student theses
-
Multiscale approaches on two-dimensional magnetic materials: From atomistic to mesoscale level
Augustin, M. (Author), Kohanoff, J. (Supervisor) & Gruening, M. (Supervisor), Jul 2021Student thesis: Doctoral Thesis › Doctor of Philosophy
File