Ultraviolet exposure of melanoma cells induces fibroblast activation protein-α in fibroblasts: Implications for melanoma invasion.

P. Wäster, I. Rosdahl, Brendan Gilmore, Oliver Seifert

Research output: Contribution to journalArticlepeer-review

21 Citations (Scopus)

Abstract

Fibroblast activation protein-a (FAP-a) promotes tumor growth and cell invasiveness through extracellular matrix degradation. How ultraviolet radiation (UVR), the major risk factor for malignant melanoma, influences the expression of FAP-a is unknown. We examined the effect of UVR on FAP-a expression in melanocytes, keratinocytes and fibroblasts from the skin and in melanoma cells. UVR induces upregulation of FAP-a in fibroblasts, melanocytes and primary melanoma cells (PM) whereas keratinocytes and metastatic melanoma cells remained FAP-a negative. UVA and UVB stimulated FAP-a-driven migration and invasion in fibroblasts, melanocytes and PM. In co-culture systems UVR of melanocytes, PM and cells from regional metastases upregulated FAP-a in fibroblasts but only supernatants from non-irradiated PM were able to induce FAP-a in fibroblasts. Further, UV-radiated melanocytes and PM significantly increased FAP-a expression in fibroblasts through secretory crosstalk via Wnt5a, PDGF-BB and TGF-ß1. Moreover, UV radiated melanocytes and PM increased collagen I invasion and migration of fibroblasts. The FAP-a/DPPIV inhibitor Gly-ProP(OPh)2 significantly decreased this response implicating FAP-a/DPPIV as an important protein complex in cell migration and invasion. These experiments suggest a functional association between UVR and FAP-a expression in fibroblasts, melanocytes and melanoma cells implicating that UVR of malignant melanoma converts fibroblasts into FAP-a expressing and ECM degrading fibroblasts thus facilitating invasion and migration. The secretory crosstalk between melanoma and tumor surrounding fibroblasts is mediated via PDGF-BB, TGF-ß1 and Wnt5a and these factors should be evaluated as targets to reduce FAP-a activity and prevent early melanoma dissemination.
Original languageEnglish
Pages (from-to)193-202
Number of pages10
JournalInternational journal of oncology
Volume39(1)
DOIs
Publication statusPublished - 2011

Fingerprint Dive into the research topics of 'Ultraviolet exposure of melanoma cells induces fibroblast activation protein-α in fibroblasts: Implications for melanoma invasion.'. Together they form a unique fingerprint.

Cite this