Uncertainty-aware demand management of water distribution networks in deregulated energy markets

Pantelis Sopasakis, Ajay Kumar Sampathirao, Alberto Bemporad, Panagiotis Patrinos

Research output: Contribution to journalArticle

2 Citations (Scopus)
150 Downloads (Pure)

Abstract

We present an open-source solution for the operational control of drinking water distribution networks which accounts for the inherent uncertainty in water demand and electricity prices in the day-ahead market of a volatile deregulated economy. As increasingly more energy markets adopt this trading scheme, the operation of drinking water networks requires uncertainty-aware control approaches that mitigate the effect of volatility and result in an economic and safe operation of the network that meets the consumers’ need for uninterrupted water supply. We propose the use of scenario-based stochastic model predictive control: an advanced control methodology which comes at a considerable computation cost which is overcome by harnessing the parallelization capabilities of graphics processing units (GPUs) and using a massively parallelizable algorithm based on the accelerated proximal gradient method.
Original languageEnglish
Pages (from-to)10-22
JournalEnvironmental Modelling and Software
Volume101
Early online date15 Dec 2017
DOIs
Publication statusPublished - 01 Mar 2018

Fingerprint Dive into the research topics of 'Uncertainty-aware demand management of water distribution networks in deregulated energy markets'. Together they form a unique fingerprint.

  • Cite this