TY - JOUR
T1 - Unraveling biomarkers of exposure for tenuazonic acid through urinary metabolomics
AU - Visintin, Lia
AU - García Nicolás, María
AU - Vangeenderhuysen, Pablo
AU - Goessens, Tess
AU - Alladio, Eugenio
AU - Pomian, Beata
AU - Vanhaecke, Lynn
AU - De Saeger, Sarah
AU - De Boevre, Marthe
PY - 2023/12
Y1 - 2023/12
N2 - Mycotoxins are secondary metabolites produced by fungi such as Aspergillus, Alternaria, and Penicillium, affecting nearly 80% of global food crops. Tenuazonic acid (TeA) is the major mycotoxin produced by Alternaria alternata, a prevalent pathogen affecting plants, fruits, and vegetables. TeA is notably prevalent in European diets, however, TeA biomarkers of exposure and metabolites remain unknown. This research aims to bridge this knowledge-gap by gaining insights about human TeA exposure and metabolization. Nine subjects were divided into two groups. The first group received a single bolus of TeA at the Threshold of Toxicological Concern (TTC) to investigate the presence of TeA urinary biomarkers, while the second group served as a control. Sixty-nine urinary samples were prepared and analyzed using UPLC-Xevo TQ-XS for TeA quantification and UPLC-Orbitrap Exploris for polar metabolome acquisition. TeA was rapidly excreted during the first 13 h and the fraction extracted was 0.39 ± 0.22. The polar metabolome compounds effectively discriminating the two groups were filtered using Orthogonal Partial Least Squares-Discriminant Analysis and subsequently annotated (n = 122) at confidence level 4. Finally, the urinary metabolome was compared to in silico predicted TeA metabolites. Nine metabolites, including oxidized, N-alkylated, desaturated, glucuronidated, and sulfonated forms of TeA were detected.
AB - Mycotoxins are secondary metabolites produced by fungi such as Aspergillus, Alternaria, and Penicillium, affecting nearly 80% of global food crops. Tenuazonic acid (TeA) is the major mycotoxin produced by Alternaria alternata, a prevalent pathogen affecting plants, fruits, and vegetables. TeA is notably prevalent in European diets, however, TeA biomarkers of exposure and metabolites remain unknown. This research aims to bridge this knowledge-gap by gaining insights about human TeA exposure and metabolization. Nine subjects were divided into two groups. The first group received a single bolus of TeA at the Threshold of Toxicological Concern (TTC) to investigate the presence of TeA urinary biomarkers, while the second group served as a control. Sixty-nine urinary samples were prepared and analyzed using UPLC-Xevo TQ-XS for TeA quantification and UPLC-Orbitrap Exploris for polar metabolome acquisition. TeA was rapidly excreted during the first 13 h and the fraction extracted was 0.39 ± 0.22. The polar metabolome compounds effectively discriminating the two groups were filtered using Orthogonal Partial Least Squares-Discriminant Analysis and subsequently annotated (n = 122) at confidence level 4. Finally, the urinary metabolome was compared to in silico predicted TeA metabolites. Nine metabolites, including oxidized, N-alkylated, desaturated, glucuronidated, and sulfonated forms of TeA were detected.
U2 - 10.1016/j.fct.2023.114183
DO - 10.1016/j.fct.2023.114183
M3 - Article
SN - 0278-6915
VL - 182
JO - Food and Chemical Toxicology
JF - Food and Chemical Toxicology
M1 - 114183
ER -