TY - JOUR
T1 - Using Vibrational Infrared Biomolecular Spectroscopy to Detect Heat-Induced Changes of Molecular Structure in Relation to Nutrient Availability of Prairie Whole Oat Grains on a Molecular Basis
AU - Mostafizar Rahman,, MD
AU - Theodoridou, Katerina
AU - Yu, Peiqiang
PY - 2016/9/9
Y1 - 2016/9/9
N2 - Background
To our knowledge, there is little study on the interaction between nutrient availability and molecular structure changes induced by different processing methods in dairy cattle. The objective of this study was to investigate the effect of heat processing methods on interaction between nutrient availability and molecular structure in terms of functional groups that are related to protein and starch inherent structure of oat grains with two continued years and three replication of each year.
Method
The oat grains were kept as raw (control) or heated in an air-draft oven (dry roasting: DO) at 120 °C for 60 min and under microwave irradiation (MIO) for 6 min. The molecular structure features were revealed by vibrational infrared molecular spectroscopy.
Results
The results showed that rumen degradability of dry matter, protein and starch was significantly lower (P <0.05) for MIO compared to control and DO treatments. A higher protein α-helix to β-sheet and a lower amide I to starch area ratio were observed for MIO compared to DO and/or raw treatment. A negative correlation (−0.99, P < 0.01) was observed between α-helix or amide I to starch area ratio and dry matter. A positive correlation (0.99, P < 0.01) was found between protein β-sheet and crude protein.
Conclusion
The results reveal that oat grains are more sensitive to microwave irradiation than dry heating in terms of protein and starch molecular profile and nutrient availability in ruminants.
AB - Background
To our knowledge, there is little study on the interaction between nutrient availability and molecular structure changes induced by different processing methods in dairy cattle. The objective of this study was to investigate the effect of heat processing methods on interaction between nutrient availability and molecular structure in terms of functional groups that are related to protein and starch inherent structure of oat grains with two continued years and three replication of each year.
Method
The oat grains were kept as raw (control) or heated in an air-draft oven (dry roasting: DO) at 120 °C for 60 min and under microwave irradiation (MIO) for 6 min. The molecular structure features were revealed by vibrational infrared molecular spectroscopy.
Results
The results showed that rumen degradability of dry matter, protein and starch was significantly lower (P <0.05) for MIO compared to control and DO treatments. A higher protein α-helix to β-sheet and a lower amide I to starch area ratio were observed for MIO compared to DO and/or raw treatment. A negative correlation (−0.99, P < 0.01) was observed between α-helix or amide I to starch area ratio and dry matter. A positive correlation (0.99, P < 0.01) was found between protein β-sheet and crude protein.
Conclusion
The results reveal that oat grains are more sensitive to microwave irradiation than dry heating in terms of protein and starch molecular profile and nutrient availability in ruminants.
U2 - 10.1186/s40104-016-0111-y
DO - 10.1186/s40104-016-0111-y
M3 - Article
SN - 1674-9782
VL - 7
JO - Journal of Animal Science and Biotechnology
JF - Journal of Animal Science and Biotechnology
IS - 52
ER -