Abstract
Catalytic steam reforming for producing high quality syngas from biomass fuel gas was studied over monolithic NiO/porous ceramic catalysts in a fixed-bed reactor. Effects of reaction temperature, steam to carbon (S/C) ratio, and nickel loading content on catalyst performance were investigated. Results indicated that the NiO/porous ceramic monolith catalyst had a good ability to improve bio-fuel gas quality. H2 yield, H2 + CO content, and H2/CO ratio in produced gas were increased when reaction temperature was increased from 550 to 700 °C. H2 yield was increased from 28.1% to 40.2% with S/C ratio increased from 1 to 2. And the yield of hydrogen was stabilized with the further increase of S/C ratio. Catalyst activity was not always enhanced with increased nickel content, when NiO loading content reaches 5.96%, serious aggregation and sintering of active composition on catalyst surface occur. The best performance, in terms of H2 yield, is obtained with 2.50% NiO content at reaction temperature of 700 °C and S/C ratio of 2.
Original language | English |
---|---|
Pages (from-to) | 331-338 |
Number of pages | 8 |
Journal | Journal of the Energy Institute |
Volume | 91 |
Issue number | 3 |
Early online date | 01 Mar 2017 |
DOIs | |
Publication status | Published - Jun 2018 |
Keywords
- Gas upgrading
- H-rich gas
- NiO/porous ceramic monolith
- Steam reforming
ASJC Scopus subject areas
- Control and Systems Engineering
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Condensed Matter Physics
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering