TY - JOUR
T1 - Variation in RTN3 and PPIL2 Genes Does not Influence Platelet Membrane β-Secretase Activity or Susceptibility to Alzheimer’s Disease in the Northern Irish Population
AU - Carson, Robyn
AU - McKnight, Amy Jayne
AU - Todd, Stephen
AU - Liu, Wei Wei
AU - Heggarty, Shirley
AU - Craig, David
AU - McGuinness, Bernadette
AU - Irvine, G. Brent
AU - Passmore, A. Peter
AU - Johnston, Janet A.
PY - 2009/12
Y1 - 2009/12
N2 - beta-site amyloid precursor protein cleaving enzyme (BACE1) is the rate-limiting enzyme for production of beta-amyloid peptides (A beta), which are proposed to drive the pathological changes found in Alzheimer's disease (AD). Reticulon 3 (RTN3) is a negative modulator of BACE1 (beta-secretase) proteolytic activity, while peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) positively regulates BACE1 expression. The present study investigated whether there was any association between genetic variation in RTN3 and PPIL2, and either risk for AD, or levels of platelet beta-secretase activity, in a large Northern Irish case-control sample. Four hundred and sixty-nine patients with a diagnosis of probable AD (NINCDS-ADRDA criteria) and 347 control individuals (MMSE > 28/30) were genotyped. SNPs in both genes were selected by downloading genotype data from the International HapMap Project (Phase II) and tags selected using multimarker approach in Haploview, where r (2) > 0.8 and LOD > 3.0. Non-synonymous SNPs of interest were also included. Genotyping was performed by Sequenom iPLEX and TaqMan technologies. Alleles, genotypes and multi-marker haplotypes were tested for association with AD, and platelet beta-secretase activities were measured for a subset of individuals (n = 231). Eight SNPs in RTN3 and 7 in PPIL2 were genotyped. We found no significant associations between allele, genotype or haplotype frequencies and risk of AD. Further, there was no effect of genotype on platelet membrane beta-secretase activity. We conclude that common or potentially functional genetic variation in these BACE1 interacting proteins does not affect platelet membrane beta-secretase activity or contribute to risk of AD in this population.
AB - beta-site amyloid precursor protein cleaving enzyme (BACE1) is the rate-limiting enzyme for production of beta-amyloid peptides (A beta), which are proposed to drive the pathological changes found in Alzheimer's disease (AD). Reticulon 3 (RTN3) is a negative modulator of BACE1 (beta-secretase) proteolytic activity, while peptidylprolyl isomerase (cyclophilin)-like 2 (PPIL2) positively regulates BACE1 expression. The present study investigated whether there was any association between genetic variation in RTN3 and PPIL2, and either risk for AD, or levels of platelet beta-secretase activity, in a large Northern Irish case-control sample. Four hundred and sixty-nine patients with a diagnosis of probable AD (NINCDS-ADRDA criteria) and 347 control individuals (MMSE > 28/30) were genotyped. SNPs in both genes were selected by downloading genotype data from the International HapMap Project (Phase II) and tags selected using multimarker approach in Haploview, where r (2) > 0.8 and LOD > 3.0. Non-synonymous SNPs of interest were also included. Genotyping was performed by Sequenom iPLEX and TaqMan technologies. Alleles, genotypes and multi-marker haplotypes were tested for association with AD, and platelet beta-secretase activities were measured for a subset of individuals (n = 231). Eight SNPs in RTN3 and 7 in PPIL2 were genotyped. We found no significant associations between allele, genotype or haplotype frequencies and risk of AD. Further, there was no effect of genotype on platelet membrane beta-secretase activity. We conclude that common or potentially functional genetic variation in these BACE1 interacting proteins does not affect platelet membrane beta-secretase activity or contribute to risk of AD in this population.
U2 - 10.1007/s12017-009-8080-3
DO - 10.1007/s12017-009-8080-3
M3 - Article
C2 - 19669607
SN - 1559-1174
VL - 11
SP - 337
EP - 344
JO - NeuroMolecular Medicine
JF - NeuroMolecular Medicine
IS - 4
ER -