Abstract
Background: The authenticity of foodstuffs and associated fraud has become an important area. It is estimated that global food fraud costs approximately $US49b annually. In relation to testing for this malpractice, analytical technologies exist to detect fraud but are usually expensive and lab based. However, recently there has been a move towards non-targeted methods as means for detecting food fraud but the question arises if these techniques will ever be accepted as routine.
Scope and approach: In this opinion paper, many aspects relating to the role of non-targeted spectroscopy based methods for food fraud detection are considered: (i) a review of the current non-targeted spectroscopic methods to include the general differences with targeted techniques; (ii) overview of in-house validation procedures including samples, data processing and chemometric techniques with a view to recommending a harmonized procedure; (iii) quality assessments including QC samples, ring trials and reference materials; (iv) use of “big data” including recording, validation, sharing and joint usage of databases.
Key findings and conclusions: In order to keep pace with those who perpetrate food fraud there is clearly a need for robust and reliable non-targeted methods that are available to many stakeholders. Key challenges faced by the research and routine testing communities include: a lack of guidelines and legislation governing both the development and validation of non-targeted methodologies, no common definition of terms, difficulty in obtaining authentic samples with full traceability for model building; the lack of a single chemometric modelling software that offers all the algorithms required by developers.
Scope and approach: In this opinion paper, many aspects relating to the role of non-targeted spectroscopy based methods for food fraud detection are considered: (i) a review of the current non-targeted spectroscopic methods to include the general differences with targeted techniques; (ii) overview of in-house validation procedures including samples, data processing and chemometric techniques with a view to recommending a harmonized procedure; (iii) quality assessments including QC samples, ring trials and reference materials; (iv) use of “big data” including recording, validation, sharing and joint usage of databases.
Key findings and conclusions: In order to keep pace with those who perpetrate food fraud there is clearly a need for robust and reliable non-targeted methods that are available to many stakeholders. Key challenges faced by the research and routine testing communities include: a lack of guidelines and legislation governing both the development and validation of non-targeted methodologies, no common definition of terms, difficulty in obtaining authentic samples with full traceability for model building; the lack of a single chemometric modelling software that offers all the algorithms required by developers.
Original language | English |
---|---|
Pages (from-to) | 38-55 |
Number of pages | 18 |
Journal | Trends in Food Science and Technology |
Volume | 76 |
Early online date | 04 Apr 2018 |
DOIs | |
Publication status | Published - 01 Jun 2018 |
Keywords
- Chemometric model
- Food authenticity
- Harmonisation
- Non-targeted
- Scientific opinion
- Spectroscopy
ASJC Scopus subject areas
- Biotechnology
- Food Science