Zinc supplementation induced transcriptional changes in primary human retinal pigment epithelium: a single-cell RNA sequencing study to understand age-related macular degeneration

Eszter Emri, Oisin Cappa, Caoimhe Kelly, Elod Kortvely, John Paul SanGiovanni, Brian S McKay, Arthur A Bergen, David A Simpson, Imre Lengyel*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
35 Downloads (Pure)

Abstract

Zinc supplementation has been shown to be beneficial to slow the progression of age-related macular degeneration (AMD). However, the molecular mechanism underpinning this benefit is not well understood. This study used single-cell RNA sequencing to identify transcriptomic changes induced by zinc supplementation. Human primary retinal pigment epithelial (RPE) cells could mature for up to 19 weeks. After 1 or 18 weeks in culture, we supplemented the culture medium with 125 µM added zinc for one week. RPE cells developed high transepithelial electrical resistance, extensive, but variable pigmentation, and deposited sub-RPE material similar to the hallmark lesions of AMD. Unsupervised cluster analysis of the combined transcriptome of the cells isolated after 2, 9, and 19 weeks in culture showed considerable heterogeneity. Clustering based on 234 pre-selected RPE-specific genes divided the cells into two distinct clusters, we defined as more and less differentiated cells. The proportion of more differentiated cells increased with time in culture, but appreciable numbers of cells remained less differentiated even at 19 weeks. Pseudotemporal ordering identified 537 genes that could be implicated in the dynamics of RPE cell differentiation (FDR < 0.05). Zinc treatment resulted in the differential expression of 281 of these genes (FDR < 0.05). These genes were associated with several biological pathways with modulation of ID1/ID3 transcriptional regulation. Overall, zinc had a multitude of effects on the RPE transcriptome, including several genes involved in pigmentation, complement regulation, mineralization, and cholesterol metabolism processes associated with AMD.
Original languageEnglish
Article number773
Number of pages25
JournalCells
Volume12
Issue number5
Early online date28 Feb 2023
DOIs
Publication statusPublished - 01 Mar 2023

Keywords

  • Humans
  • Retinal Pigment Epithelium/metabolism
  • Zinc/metabolism
  • Macular Degeneration/metabolism
  • Gene Expression Profiling
  • Sequence Analysis, RNA

Fingerprint

Dive into the research topics of 'Zinc supplementation induced transcriptional changes in primary human retinal pigment epithelium: a single-cell RNA sequencing study to understand age-related macular degeneration'. Together they form a unique fingerprint.

Cite this