Profiling G protein-coupled receptors of Fasciola hepatica identifies orphan rhodopsins unique to phylum Platyhelminthes

    Research output: Contribution to journalArticle

    Published

    View graph of relations

    G protein-coupled receptors (GPCRs) are established drug targets. Despite their considerable appeal as targets for next-generation anthelmintics, poor understanding of their diversity and function in parasitic helminths has thwarted progress towards GPCR-targeted anti-parasite drugs. This study facilitates GPCR research in the liver fluke, Fasciola hepatica, by generating the first profile of GPCRs from the F. hepatica genome. Our dataset describes 147 high confidence GPCRs, representing the largest cohort of GPCRs, and the most complete set of in silico ligand-receptor predictions, yet reported in any parasitic helminth. All GPCRs fall within the established GRAFS nomenclature; comprising three glutamate, 135 rhodopsin, two adhesion, five frizzled, one smoothened, and one secretin GPCR. Stringent annotation pipelines identified 18 highly diverged rhodopsins in F. hepatica that maintained core rhodopsin signatures, but lacked significant similarity with non-flatworm sequences, providing a new sub-group of potential flukicide targets. These facilitated identification of a larger cohort of 76 related sequences from available flatworm genomes, representing new members of existing groups (PROF1/Srfb, Rho-L, Rho-R, Srfa, Srfc) of flatworm-specific rhodopsins. These receptors imply flatworm specific GPCR functions, and/or co-evolution with unique flatworm ligands, and could facilitate the development of exquisitely selective anthelminthics. Ligand binding domain sequence conservation relative to deorphanised rhodopsins enabled high confidence ligand-receptor matching of seventeen receptors activated by acetylcholine, neuropeptide F/Y, octopamine or serotonin. RNA-Seq analyses showed expression of 101 GPCRs across various developmental stages, with the majority expressed most highly in the pathogenic intra-mammalian juvenile parasites. These data identify a broad complement of GPCRs in F. hepatica, including rhodopsins likely to have key functions in neuromuscular control and sensory perception, as well as frizzled and adhesion/secretin families implicated, in other species, in growth, development and reproduction. This catalogue of liver fluke GPCRs provides a platform for new avenues into our understanding of flatworm biology and anthelmintic discovery.

    Documents

    DOI

    Original languageEnglish
    Number of pages17
    Pages (from-to)87-103
    JournalInternational Journal for Parasitology - drugs & drug resistance
    Journal publication date01 Apr 2018
    Issue number1
    Volume8
    Early online date23 Oct 2017
    DOIs
    Publication statusPublished - 01 Apr 2018

    ID: 140134085