Preliminary investigation of mixed adsorbents for the removal of copper and methylene blue from aqueous solutions

Published in:
Chemical Engineering Journal

Document Version:
Early version, also known as pre-print

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Abstract: With most recent studies being focused on the development of advanced chemical adsorbents, this paper investigates the possibility of using two natural low-cost materials for selective adsorption. Multi-adsorbent systems containing tea waste (TW) and dolomite (DO) have been tested for their effectiveness in the removal of copper and methylene blue from aqueous solutions. The effects of contact time, solution pH and adsorption isotherms on the sorption behaviour were investigated. The Langmuir and Freundlich isotherms adequately described the adsorption of copper ions and methylene blue by both materials in different systems. The highest adsorption capacities for Cu and MB were calculated as 237.7 mg/g at pH 4.5 and 150.4 mg/g at pH 7 for DO and TW:DO respectively. Tea waste and dolomite were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and Energy dispersive X-ray analysis. The removal of Cu and MB by dolomite was mainly via surface complexation while physisorption was responsible for most of the Cu and MB adsorption onto tea waste. Identifying the fundamental mechanisms and behaviour is key to the development of practical multi-adsorbent packed columns.

Response to Reviewers: RESPONSE TO REVIEWERS:
Authors would like to thank the reviewers for very constructive comments. We believe that addressing the reviewer's concerns has led to improvements in the manuscript.

The following explains how we handled the comments raised by reviewers.

Response to Reviewer No 1:
It is a very good study which aims the investigation of adsorption/removal of a heavy metal (copper) and a dye (methylene blue) using low-cost adsorbent. My comments are listed below.
1. Fig.1 presents the kinetic data without fitting, while Fig.2 after fitting. I recommend authors to move Fig.1 to Supporting information section.
Answer: Figure 1 has been moved to the Supplementary data as recommended.
2. Fig. 4 has 6 sub-figs without numbering. But, I think they need merging into at least 2 sub-figs and not 6.
Answer: Putting these figures in 2 sub-figures will not allow clear demonstration of the data and isotherm fitting. However, Figure 4 was spilt into 2 figures.

3. The major absorbencies (as described in text) should be illustrated in Fig.6, 7 (FTIR).
Answer: There are so many peaks and adding them to the figures will make it hard to notice the changes in the sample surface before and after adsorption.

4. It will be good to add a column in Table 1 (for each fitting), presenting the %change between Qe,exp and Qe,cal.
Answer: The qe,exp and qe,cal values have been discussed in the manuscript and there is no need to represent the change between them in the table.

5. Authors should illustrate (as scheme/figure) an adsorption mechanism based on their findings (FTIR, etc). It is more attractive for any reader to read and follow a figure than only text.
Answer: A new figure (Figure 6) has been added. The figure illustrates the possible removal mechanisms for copper and methylene blue onto dolomite and tea waste.

Response to Reviewer No 2:

6. In table 3 the Redlich-Peterson model capacity is not comparable with the Langmuir model capacities. This capacity must be omitted.
Answer: The Redlich-Peterson model has not been employed to describe the isotherm experimental data in this study.

7. Figure 1 gives no essential information and can be omitted.
Answer: As per Reviewer 1 suggestion, Figure 1 has been moved to the supplementary data section.

Response to Reviewer No 3:

8. There are several technical errors:
Page 6: row 129 "The Cr(VI) percentage removal...". It should be Cu(II).
There are two tables numbered as No 3. Table 3.Comparison of adsorption capacities...has to be mentioned in the text.
Answer: The manuscript was revised and all typo mistakes have been corrected.
Dear Editor,

On behalf of myself and my colleagues (co-authors of this work), please find attached an electronic copy of the manuscript “Preliminary investigation of mixed adsorbents for the removal of copper and methylene blue from aqueous solutions” submitted to "Chemical Engineering Journal" for possible publication.

This work is original and has not been submitted nor published anywhere else. The findings and results in this work are novel and have not been taken from any other source.

I will be really thankful if you consider this work for possible publication in this reputable Journal.

Best Regards,

Dr Ahmad Albadarin, PhD.
Materials Surface Science Institute,
Department of Chemical and Environmental Sciences,
University of Limerick, Ireland
RESPONSE TO REVIEWERS:

Authors would like to thank the reviewers for very constructive comments. We believe that addressing the reviewer’s concerns has led to improvements in the manuscript.

The following explains how we handled the comments raised by reviewers.

Response to Reviewer No 1:

It is a very good study which aims the investigation of adsorption/removal of a heavy metal (copper) and a dye (methylene blue) using low-cost adsorbent. My comments are listed below.

1. Fig. 1 presents the kinetic data without fitting, while Fig. 2 after fitting. I recommend authors to move Fig. 1 to Supporting information section.

Answer: Figure 1 has been moved to the Supplementary data as recommended.

2. Fig. 4 has 6 sub-figs without numbering. But, I think they need merging into at least 2 sub-figs and not 6.

Answer: Putting these figures in 2 sub-figures will not allow clear demonstration of the data and isotherm fitting. However, Figure 4 was spilt into 2 figures.

3. The major absorbencies (as described in text) should be illustrated in Fig. 6, 7 (FTIR).

Answer: There are so many peaks and adding them to the figures will make it hard to notice the changes in the sample surface before and after adsorption.

4. It will be good to add a column in Table 1 (for each fitting), presenting the % change between Qe,exp and Qe,cal.

Answer: The qe,exp and qe,cal values have been discussed in the manuscript and there is no need to represent the change between them in the table.

5. Authors should illustrate (as scheme/figure) an adsorption mechanism based on their findings (FTIR, etc). It is more attractive for any reader to read and follow a figure than only text.

Answer: A new figure (Figure 6) has been added. The figure illustrates the possible removal
mechanisms for copper and methylene blue onto dolomite and tea waste.

Response to Reviewer No 2:

6. In table 3 the Redlich-Peterson model capacity is not comparable with the Langmuir model capacities. This capacity must be omitted.

Answer: The Redlich-Peterson model has not been employed to describe the isotherm experimental data in this study.

7. Figure 1 gives no essential information and can be omitted.

Answer: As per Reviewer 1 suggestion, Figure 1 has been moved to the supplementary data section.

Response to Reviewer No 3:

8. There are several technical errors:

Page 6: row 129 "The Cr(VI) percentage removal...". It should be Cu(II). There are two tables numbered as No 3. Table 3. Comparison of adsorption capacities...has to be mentioned in the text.

Answer: The manuscript was revised and all typo mistakes have been corrected.
RESEARCH HIGHLIGHTS:

- Multi-adsorbent systems containing tea waste (TW) and dolomite (DO) have been tested.
- The effects of contact time, solution pH and adsorption isotherms were investigated.
- Adsorption capacities for Cu and MB were calculated as 237.7 and 150.4 mg.g\(^{-1}\) for DO and TW:DO respectively.
- Solution pH had little effect on the capacity of the TW:DO system, specifying that the system has good potential for practical use.
Preliminary investigation of mixed adsorbents for the removal of copper and methylene blue from aqueous solutions

Ahmad B. Albadarin1,2,*, Jiabin Mo1, Yoann Glocheux1, Stephen Allen1, Gavin Walker1,2, Chirangano Mangwandi1,*

1Materials Surface Science Institute, Department of Chemical and Environmental Sciences, University of Limerick, Ireland

2School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, UK.

*Corresponding Author

Dr Chirangano Mangwandi

Dr Ahmad B. Albadarin

Tel: +44 (0) 28 9097 4378

Fax: +44 (0) 28 9097 6524

E-mail: c.mangwandi@qub.ac.uk

E-mail: aalbadarin01@qub.ac.uk
Abstract

With most recent studies being focused on the development of advanced chemical adsorbents, this paper investigates the possibility of using two natural low-cost materials for selective adsorption. Multi-adsorbent systems containing tea waste (TW) and dolomite (DO) have been tested for their effectiveness in the removal of copper and methylene blue from aqueous solutions. The effects of contact time, solution pH and adsorption isotherms on the sorption behaviour were investigated. The Langmuir and Freundlich isotherms adequately described the adsorption of copper ions and methylene blue by both materials in different systems. The highest adsorption capacities for Cu and MB were calculated as 237.7 mg/g at pH 4.5 and 150.4 mg/g at pH 7 for DO and TW:DO respectively. Tea waste and dolomite were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and Energy dispersive X-ray analysis. The removal of Cu and MB by dolomite was mainly via surface complexation while physisorption was responsible for most of the Cu and MB adsorption onto tea waste. Identifying the fundamental mechanisms and behaviour is key to the development of practical multi-adsorbent packed columns.

Keywords: Multi-adsorbents; Wastewater; Adsorption technique; Heavy metals; Dyes
1. Introduction

Dyes (very frequently methylene blue and methyl orange) and heavy metals (copper, cadmium and nickel mostly from the organo-metallic dyes) are dangerous pollutants found in large quantities in wastewaters from textile and paper industries. It is known that heavy metals are toxic and non-biodegradable [1, 2]. Heavy metals have many environmental issues such as animal and plant death, reduced rates of reproduction and the decrease of ecosystem diversity [3]. While dyes are difficult to treat as the colour tends to hold strong even after the conventional removal processes [4]. There are more than 100,000 commercially available dyes with over 700,000 tons produced annually [5]. The presence of some of these dyes even in very small amounts i.e. < 1 mg.dm\(^{-3}\) is undesirable [6, 7]. Dyes-

Heavy metal loaded wastewaters are highly coloured, have a fluctuating pH and regularly contain large amounts of suspended oils. Dyes and heavy metals find their way into the environment, primarily dissolved or suspended in water everyday [8] and create serious damage to the environment by changing the biological life balance in rivers and lakes [9, 10]. Adsorption is a well-established and powerful practice for the removal of dyes and heavy metal pollutants from wastewaters. For these reasons, thousands of investigations have used uncountable adsorbents to remove heavy metals [11] or dyes [12]. Most of these studies focus on single-component aqueous solutions and recently, more research papers have been published dealing with the adsorption of dyes and metals in multi-component aqueous systems [6]. Also, composite adsorbents have been established to adsorb dyes and heavy metals from wastewater such as chitosan/montmorillonite composites [13-15] and fly ash/activated carbon [16]. In previous studies, composite materials were used to selectively adsorb a particular pollutant. Ho and co-workers proved that amino functionalized silica solids can selectively adsorb dye anthraquinone blue in the presence of methylene blue, while, from the same dye mixture, carboxy-functionalized materials adsorb methylene blue.
selectively [17]. Prediction of multicomponent adsorption is still one of the most challenging problems in the adsorption field [18]. There is little data available to provide more understanding about the interactions between adsorbents and developing design models for such practical systems is very important [19]. This is the case for many composite materials as well as adsorption processes with multi-adsorbate and multi-adsorbent systems. Dolomite, with a structure of alternative layers of calcite and magnesite, is a potential inexpensive and readily available adsorbent [20]. Many studies showed that dolomite and charred dolomite have the potential to act as adsorbents for reactive dyes and heavy metals [21]. Tea, processed leaves from Camellia sinensis species, is the second most common drink being consumed after water with an average daily drinking of 20 billion cups. The producers of making tea drinks face a problem in disposing of the spent tea leaves after the extraction [22, 23]. The feasibility of using the richly available solid waste, spent tea leaves, for the removal of heavy metals and dyes has also been extensively investigated [24]. A good understanding of the effect of adsorbent-adsorbent interactions on selective adsorption is essential as a foundation for selecting the best adsorbent and employing it in an optimal way. Hence, the aim of this research is to clarify the chemical and physical interferences between the two materials, namely tea waste and dolomite, when used for the removal of copper and methylene blue from aqueous solutions. In this paper, the term adsorption will refer to biosorption onto tea waste (TW) and adsorption onto dolomite (DO). Copper ions and methylene blue dye adsorption onto tea waste and dolomite using different factors, such as reaction contact time and pH of solution as well as initial metal and dye concentration on selective adsorption was examined. Recognizing the fundamental mechanisms and behaviour would be useful for practical multi-adsorbent packed columns.
2. Materials and Methods

2.1. Adsorbents and adsorbents

The two low cost materials used in this experiment were tea waste (TW) biosorbent and dolomite (DO) adsorbent. Fine Dolomite ($d_p < 50\mu m$) was supplied by Killwaughter Chemical Company, UK. The typical chemical composition of the dolomite in the deposit was 44% MgCO$_3$ and 53% CaCO$_3$ (obtained by XRD analysis) [25]. The tea waste biosorbent was collected from Queen’s University cafeteria; it was washed several times with hot water and dried in a conventional oven at 110 °C. The two adsorbents were comprehensively characterized in previous investigations [26, 27]. Copper(II) and Methylene Blue (MB) stock solutions were prepared by dissolving known amounts of CuSO$_4$·5H$_2$O and MB in deionised water. The stock solutions were then diluted to get various initial concentrations. All chemicals were purchased from Sigma Aldrich UK.

2.2. Adsorption Experiment

To investigate the influence of pH on Cu(II) and MB adsorption onto TW and DO, six sets of experiments were prepared: Cu(II) or MB with TW biosorbent; Cu(II) or MB with DO adsorbent and Cu(II) or MB with a mixture of 1:1 TW:DO (w/w%). Samples of 25 cm3 of adsorbate solutions with $C_o = 120$ and 100 mg/dm3 of Cu and MB, respectively, were adjusted to different pH values: 2–11. The same procedures were performed to study the effect of contact time and adsorption isotherms. The initial concentrations of Cu(II) for the contact time studies was 200 mg/dm3 and for MB it was 120 mg/dm3. For the adsorption isotherm studies, a concentration of: $C_o = 10–100$ mg/dm3 for Cu(II) and $C_o = 10–75$ mg/dm3 for MB were used. An adsorbent dose of 1 g/dm3 was used for all experiments at room temperature (~20 °C) and a contact time of 4 days to ensure reaching the equilibrium. There were no pH adjustments for contact time and isotherm experiments, so the experimental processes are more environmental friendly. The concentrations of Cu(II) and MB were
analysed using an ICP–OES Thermo Scientific IRIS and UV/Vis spectrophotometer (Perkin Elmer LAMBDA 25, UK), respectively. The amount of Cu(II) and MB adsorbed per unit mass of adsorbent \(q \) in (mg/g) and removal percentage were calculated using Eq. (1) and Eq. (2):

The percentage removal \[
\% = 100 \times \left(1 - \frac{C_e}{C_o}\right)
\] (1)

\[
q = \frac{C_o - C_e}{M} \times V
\] (2)

Where \(C_o \) and \(C_e \) (mg/L) are the concentration of adsorbate at initial and equilibrium, respectively, \(M \) is the mass of adsorbent (g) and \(V \) is the volume (dm\(^3\)).

2.3. Infrared and SEM measurement

The FT-IR analyses for TW and DO surfaces before and after Cu(II) and MB adsorption were carried out on a Perkin Elmer Spectrum 100 within the range of 400–4000 cm\(^{-1}\). For the SEM analysis and Energy dispersive X-ray (EDX) analysis, TW and DO samples were coated with carbon and vacuumed (5–10 min) for electron reflection prior to analysis on a JEOL-JSM 6400 scanning microscope.
3. Results and Discussion

3.1. Effect of contact time

Figures S1 (a) and (b) are the plots of Cu(II) and MB removal against time for TW and DO materials, respectively. It can be seen that Cu(II) and MB were almost completely removed by dolomite and tea waste after 6 hrs at room temperature (20 °C). The adsorption of Cu(II) and MB dye was fast in the initial stage due to the large number of available binding sites, resulting in a concentration gradient [28]. The removal rate gradually declined with time until equilibrium was achieved. The maximum removal efficiencies of copper ions and MB onto TW and DO were approx. 90% at pH of 5–7. The adsorption capacities of Cu(II) and MB were reduced when the two materials were mixed together; this reduction was more significant in the case of Cu(II). The adsorption capacity of the mixed adsorbent (TW:DO) was reduced to approx. 45% and 85% for Cu and MB, respectively. This reduction is attributed to the change in the sorbent and solution properties such as pH_PZC and pH_equilibrium [29]. However, results indicate that these pollutants can still be efficiently removed with high selectivity onto the mixed adsorbents.

3.2. Kinetics Modelling

The adsorption mechanism can be investigated using various adsorption kinetics models. The pseudo first- [30] and pseudo second-order [31] models (Eq. 3 and Eq. 4) have been employed to examine the experimental data for the adsorption of Cu(II) and MB by nonlinear regression. The pseudo first-order model equation is given as follow:

\[q_t = q_e \left(1 - e^{-k_1t}\right) \]

The pseudo second-order equation is given as:

\[q_t = \frac{k_2q_e^2}{\left(1 + k_2q_0t\right)} \]

The second-order rate constants were used to calculate the initial sorption rate given by:
where \(k_1 (1/\text{min}) \) and \(k_2 (\text{g/mg min}) \) are the rate constants for first order and second-order models.

The plots of \(q_t \) versus \(t \) and values of the constants of kinetic models obtained from the plots are given in Figure 1 and Table 1. From Table 1, the pseudo first- and pseudo second-order models fit the kinetic data with adequate accuracy \((R^2 > 0.897)\). However, the experimental data demonstrated more agreement with the pseudo second-order model in terms of closer \(q_{e,\text{cal}} \) values to \(q_{e,\text{exp}} \) and higher correlation coefficients than the pseudo first-order model.

This indicates that the chemical adsorption was the main control process for the TW and DO materials and the uptake capacity is proportional to the number of active sites [32]. Similar trends were reported for the removal of copper onto chitosan-coated sludge [33] and methylene blue onto magnetic graphene-carbon nanotube composite and polyaniline nanotubes base/silica [34, 35]. The rate constants \((k_1 \) and \(k_2)\) for both Cu(II) and MB sorption onto the TW biosorbent are higher than that for the DO adsorbent. This indicates that it is faster for Cu(II) and MB–TW systems to reach a specific fractional uptake. Initial adsorption rate \((h)\) values for Cu(II) and MB sorption followed the same trends (Cu(II) \((89.07–110.9 \text{ mg/g min})\) and MB \((17.56–56.65 \text{ mg/g min})\). Also, the Elovich equation was used to evaluate the kinetic sorption data. The linear form of the Elovich equation is given in Eq. 6 below:

\[
q_t = \frac{1}{\beta \ln(\alpha \beta)} + 1/\beta \ln(t)
\]

where \(\alpha \) is the initial adsorption rate (mg/g min), whilst \(\beta \) is the extent of surface coverage (g/mg) and activation energy of the process.

As can be seen in Table 1, the initial sorption rate \((\alpha)\) is lower in the case of sorption onto the DO system, similar to that of rate constants and initial sorption rate \((h)\) in the pseudo second-
order model. The Elovich equation did not fit the experimental data very well with the regression coefficient, R^2, within 0.659–0.877, suggesting that sorption systems of this study are maybe homogeneous.

3.3. Effect of solution pH

The pH parameter is associated with the adsorption mechanisms onto the adsorbent/biomass surfaces from water and determines the magnitude of the electrostatic charges [36]. From Figure 2, it can be observed that the uptake of Cu(II) onto the DO is significantly increased from 39% of removal at pH 2 to a maximum removal of 89% at pH 4.5. At this pH value, the main species of copper are Cu(II) free ions which are primarily involved in the removal process. With a pH value greater than 6, immediate precipitation of copper hydroxide takes place especially for high concentration of Cu(II) ions hindering the adsorption or biosorption processes [37]. The adsorption capacity of Cu(II) onto TW was notably lower at pH 4.5 with a maximum percentage removal of 39% at pH 5.5. The relatively lower Cu(II) removal onto TW can be attributed to the surface chemistry properties of TW such as; the surface point of zero charge. The PZC was previously determined to be pH = 4 [27] and had an important effect on the equilibrium ($\text{pH}_{\text{equilibrium}}$). For example, the Cu(II) solution with a $\text{pH}_o = 5.5$ decreased to $\text{pH}_{\text{eq}} = 4.2$ after being put in contact with TW for 4 days. Similar trends were observed for the biosorption of Cd(II) onto sawdust [1]. Also, it was found that the equilibrium pH for MB solution at $\text{pH}_o = 10$ was reduce to $\text{pH}_{\text{eq}} = 8.8$ when using the TW:DO mixed adsorbent. However, MB was efficiently removed by TW over the pH range studied, which is attributable to the electrostatic attraction between the negatively charged TW surface and the cationic MB dye molecules [38]. These results demonstrated that pH had little effect on the capacity of the TW:DO system, indicating that the system has good potential for practical use.
3.4. Equilibrium modelling

3.4.1. Langmuir Isotherm

The Langmuir isotherm assumes that the surface of the adsorbent is homogeneous, the adsorption energy is constant over all sites and each site can accommodate only one molecule or atom [39]. The Langmuir adsorption isotherm is given as [40]:

\[q_e = \frac{q_{\text{max}} b C_e}{1 + b C_e} \]

(7)

where \(q_{\text{max}} \) (mg/g) and \(b \) (dm\(^3\)/mg) are Langmuir constants associated with the capacity and energy of adsorption.

The fundamental characteristics of the Langmuir isotherm can be expressed by a dimensionless separation factor, \(R_L \), defined by:

\[R_L = \frac{1}{1 + (q_{\text{max}} \times b) C_o} \]

(8)

The \(R_L \) parameter indicates the shape of the isotherm as follows: \(R_L > 1 \), unfavourable; \(R_L = 1 \), linear; \(0 < R_L < 1 \), favourable; \(R_L = 0 \), irreversible.

3.4.2. Freundlich Isotherm

The Freundlich isotherm explains a particular phenomenon when the adsorption takes place on a heterogeneous surface [41]. The Freundlich isotherm model is given in Eq. 9:

\[q_e = K_F C_e^n \]

(9)

where \(K_F \) and \(n \) are the Freundlich constants.

The Langmuir and Freundlich isotherm constants obtained from non-linear regression fitting are revealed in Table 2. The Langmuir and Freundlich isotherms were able to represent adsorption of copper ions and methylene blue by both materials in different systems (Figure 3 & 4). The adsorption capacity of DO for Cu is significantly higher than TW and the trend is
reversed for MB. It can also be observed that the combination of TW and DO adsorbents will
reduce the adsorption capacity towards Cu, while increasing the MB adsorption capacity
(Table 2). In general, the sorption capacities were higher for MB than Cu, which may be due
to the isotherm experiment being carried out without any pH adjustment. The dimensionless
separation factor (R_L) values were close to zero in all cases. This indicates that the adsorption
processes of Cu ad MB were favourable at the investigated conditions. The R_L values
approached zero when TW:DO systems were used demonstrating that the uptake of the Cu
and MB in these systems was more favourable. The Freundlich constant, n values in the
range of 1.061–3.764 confirmed the process is classified as favourable adsorption [42]. The
closer $1/n$ is to zero, the greater the heterogeneity of the adsorbent [43].

3.5. Surface Characteristics of TW and Dolomite

3.5.1. SEM and EDX

The SEM images of the TW and DO samples before and after adsorption of Cu and MB are
shown in (Figure 5); experimental conditions: C_0: MB = 120 at pH 7 and Cu = 200 at pH 4.4
and 6 hrs contact time). From Figure 5 (b) and (c), it can be noticed the formation of crystals
at the surface of the DO sample after adsorption with Cu and MB. The presence of CuCO$_3$ is
confirmed with the presence of small and abundant crystals on the surface of DO. The
development of crystals in the case of the DO–MB sample also suggests the implication of
surface precipitation in the case of MB removal by DO. Similar processes were identified by
Walker et al. with the removal of Cu$^{2+}$ by half charred dolomite where surface complexation
and precipitation were identified as the main removal route (See Figure 6 (a)) [25]. Surface
precipitation of dye was reported in other studies and accounted for nearly 70% of dye
removal when using lime treatment [44]. For the TW material, very little changes were
observed between the samples before and after adsorption of MB and Cu. The absence of
obvious surface structure change indicates that no surface precipitation is involved in the
removal of both pollutants by TW. The metal ions and dye molecules may bound to the active sites of the biosorbent through electrostatic attraction or hydrogen bonding (Figure 6(b)). Heavy metals removal by TW is very often accounted to chemisorption while dyes removal by biosorbents or activated carbon is mainly described through physisorption with minor contribution from chemisorption mechanisms [27, 45]. Table 3 presents the EDX results obtained for the exhausted adsorbents after kinetic experiments. The area analysed was the one presented in Figure 5, focusing on the crystals formed in the case of DO-Cu or DO-MB or on the possibly larger area for the TW-Cu and TW-MB. The thin carbon layer required in the technique shifted all the results obtained for the C content. However, it can be seen that TW samples are carbon rich as expected and DO contains a substantial amount of C, partly accounted for the CO₃²⁻ groups. The EDX method shows that Cu is present in the crystals formed at the surface of DO confirming the surface precipitation phenomenon. The presence of sulphur is probably due to the sulphate groups present in the Cu salt used in the experiment. The EDX technique cannot differentiate between the crystals formed and those in the DO structure. However, due to the experimental conditions, the nature of the copper crystals precipitated are identified as copper hydroxide crystals Cu(OH)₂ with potential existence of sulphate or carbonate groups [46]. The blue macroscopic colour of the DO sample after adsorption of copper confirms this identification. In the case of MB adsorption onto DO, the relatively high amount of sulphur can be accounted to the sulphur atoms present in the MB molecule. As the analysis area is focusing only on the crystals visible in Figure 5(c), the value of nearly 7% sulphur has to be balanced. Regarding the TW-Cu sample, the presence of 4.3% Cu at the surface of the sample is equivalent to 43 mg/g of Cu adsorption capacity, which is very close to the adsorption capacity calculated in the kinetic experiments (Table 1). The EDX analysis in the present case was carried out over the total surface of the sample from Figure 5(e) as no surface precipitation was noticed. The very low content of
sulphur on the TW–Cu sample indicates that the sulphate groups from the copper salt are not adsorbed by the biosorbents. The copper sorption onto the TW surface is therefore very selective. The higher content of sulphur on the surface of the TW–MB sample confirms the adsorption of MB. The EDX technique confirmed the precipitation of both Cu and MB onto the surface of DO and suggested that the sorption of these pollutants onto TW was either due to chemisorption or physisorption.

3.5.2. FTIR analysis

Figure 7 illustrates the FTIR analysis of the DO samples before and after adsorption of MB and Cu. The spectrum of the DO sample shows several peaks around 1400 cm$^{-1}$ which are related to the CO$_3^{2-}$ groups and are attributed to the C–O bonds present in the sample [26]. Bands around 2500 cm$^{-1}$ are assigned to water molecules bonded to the sample [36]. The net peaks detected after the adsorption of MB found around 3414 cm$^{-1}$ are attributed to OH$^-$ bonds and thus show the hydration of the DO sample and possible links with MB molecules through chemisorption. The relatively high peak at 3430 cm$^{-1}$ confirms the presence of hydroxyl groups and the formation of Cu(OH)$_2$ complexes. A sharp peak observable at 714 cm$^{-1}$ after Cu sorption was also noticed by Ippolito et al. and attributed to the presence of CaO [47]. The formation of complexes in the form of Ca/Cu-(OH)$_x$ is thus highly probable. A partial ion-exchange mechanism between Ca$^{2+}$ and Cu$^{2+}$ in the removal of copper from wastewater was also reported by Walker et al. [25]. The FTIR analysis for the TW sample shown in Figure 8, demonstrated major peaks indicating many functional groups such as –NH_2 and –OH groups of proteins and glucose; –CH stretching and >C=O ester stretching vibration of triglycerides; this stretching mode conjugated with the NH_2 (amide I band) [27]. After MB adsorption onto TW two main peaks can be seen at 1383 and 1337 cm$^{-1}$ and most of the peaks already present are enhanced. The FTIR peaks characteristic of MB molecules overlap with peaks from the TW sample as most chemical groups present in MB are present
in TW. The broad peak visible around 3230–3270 cm$^{-1}$ is linked to the N-H bonding from MB. The peaks around 1737 and 1160 cm$^{-1}$ account for the sulphate groups and are naturally present on the TW sample [48]. It is thus interesting to note that after Cu adsorption this peak is relatively high, thus indicating a sorption of the sulphate groups from the copper salt as well. Negatively charged ions are necessary to counter-balance the sorption of Cu$^{2+}$ onto TW, also SO$_4^{2-}$ is involved in this process. The sorption of both anions and cations is characteristics of physisorption where both ions co-habit in the diffuse layer [49]. EDX analysis coupled with FTIR investigation showed that surface complexation was the main route of removal for Cu and MB by DO. Using data from the pH study it can be concluded that physisorption was responsible for most of Cu and MB adsorption onto TW even if chemisorption was also contributing to the removal of MB by TW.

3.6. Comparison of adsorption capacity with composite adsorbents

A comparison was carried out between the results of the adsorption capacities of tea waste and dolomite multi-adsorbent system dyes and chemically prepared composite adsorbents towards copper ions and methylene blue (Table 4). Ignoring the different experimental conditions used, it can be seen that the adsorption capacities obtained in this study are comparable with those reported by other researchers. This indicates that tea waste and dolomite multi-adsorbents can be classified as one of the effective adsorption systems for this purpose. The two substances in this investigation were physically mixed without any chemical modifications. Once more, this implies that environmentally friendly composite adsorbents can be produced at low cost and very little effort without any chemical alterations.
4. Conclusion

The selectivity of tea waste and dolomite for copper and methylene blue and the influence of contact time, solution pH and initial pollutant concentration on adsorption capacities was examined. The adsorption kinetics could be explained by the pseudo-second-order model. The maximum removal capacity of Cu onto both adsorbents was achieved at pH = 4.5, while MB was optimally removed over the pH range studied with removal percentages of over 90%. The present investigation indicated that tea waste and dolomite can concurrently be effectively used to remove copper and methylene blue from aqueous solution. Further studies are required to examine the effect of the chemistry of solution and the design and scale-up of fixed-bed adsorption columns.
5. References

Preliminary investigation of mixed adsorbents for the removal of copper and methylene blue from aqueous solutions

Ahmad B. Albadarin\(^1,2^*\), Jiabin Mo\(^1\), Yoann Glocheux\(^1\), Stephen Allen\(^1\), Gavin Walker\(^1,2\), Chirangano Mangwandi\(^1^*\)

\(^1\)Materials Surface Science Institute, Department of Chemical and Environmental Sciences, University of Limerick, Ireland

\(^2\)School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, UK.

*Corresponding Author

Dr Chirangano Mangwandi

Dr Ahmad B. Albadarin

Tel: +44 (0) 28 9097 4378

Fax: +44 (0) 28 9097 6524

E-mail: c.mangwandi@qub.ac.uk

E-mail: aalbadarin01@qub.ac.uk
Abstract

With most recent studies being focused on the development of advanced chemical adsorbents, this paper investigates the possibility of using two natural low-cost materials for selective adsorption. Multi-adsorbent systems containing tea waste (TW) and dolomite (DO) have been tested for their effectiveness in the removal of copper and methylene blue from aqueous solutions. The effects of contact time, solution pH and adsorption isotherms on the sorption behaviour were investigated. The Langmuir and Freundlich isotherms adequately described the adsorption of copper ions and methylene blue by both materials in different systems. The highest adsorption capacities for Cu and MB were calculated as 237.7 mg/g at pH 4.5 and 150.4 mg/g at pH 7 for DO and TW:DO respectively. Tea waste and dolomite were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and Energy dispersive X-ray analysis. The removal of Cu and MB by dolomite was mainly via surface complexation while physisorption was responsible for most of the Cu and MB adsorption onto tea waste. Identifying the fundamental mechanisms and behaviour is key to the development of practical multi-adsorbent packed columns.

Keywords: Multi-adsorbents; Wastewater; Adsorption technique; Heavy metals; Dyes
1. Introduction

Dyes (very frequently methylene blue and methyl orange) and heavy metals (copper, cadmium and nickel mostly from the organo-metallic dyes) are dangerous pollutants found in large quantities in wastewaters from textile and paper industries. It is known that heavy metals are toxic and non-biodegradable [1, 2]. Heavy metals have many environmental issues such as animal and plant death, reduced rates of reproduction and the decrease of ecosystem diversity [3]. While dyes are difficult to treat as the colour tends to hold strong even after the conventional removal processes [4]. There are more than 100,000 commercially available dyes with over 700,000 tons produced annually [5]. The presence of some of these dyes even in very small amounts i.e. < 1 mg.dm$^{-3}$ is undesirable [6, 7]. Dyes-

Heavy metal loaded wastewaters are highly coloured, have a fluctuating pH and regularly contain large amounts of suspended oils. Dyes and heavy metals find their way into the environment, primarily dissolved or suspended in water everyday [8] and create serious damage to the environment by changing the biological life balance in rivers and lakes [9, 10].

Adsorption is a well-established and powerful practice for the removal of dyes and heavy metal pollutants from wastewaters. For these reasons, thousands of investigations have used uncountable adsorbents to remove heavy metals [11] or dyes [12]. Most of these studies focus on single-component aqueous solutions and recently, more research papers have been published dealing with the adsorption of dyes and metals in multi-component aqueous systems [6]. Also, composite adsorbents have been established to adsorb dyes and heavy metals from wastewater such as chitosan/montmorillonite composites [13-15] and fly ash/activated carbon [16]. In previous studies, composite materials were used to selectively adsorb a particular pollutant. Ho and co-workers proved that amino functionalized silica solids can selectively adsorb dye anthraquinone blue in the presence of methylene blue, while, from the same dye mixture, carboxy-functionalized materials adsorb methylene blue
selectively [17]. Prediction of multicomponent adsorption is still one of the most challenging problems in the adsorption field [18]. There is little data available to provide more understanding about the interactions between adsorbents and developing design models for such practical systems is very important [19]. This is the case for many composite materials as well as adsorption processes with multi-adsorbate and multi-adsorbent systems. Dolomite, with a structure of alternative layers of calcite and magnesite, is a potential inexpensive and readily available adsorbent [20]. Many studies showed that dolomite and charred dolomite have the potential to act as adsorbents for reactive dyes and heavy metals [21]. Tea, processed leaves from *Camellia sinensis* species, is the second most common drink being consumed after water with an average daily drinking of 20 billion cups. The producers of making tea drinks face a problem in disposing of the spent tea leaves after the extraction [22, 23]. The feasibility of using the richly available solid waste, spent tea leaves, for the removal of heavy metals and dyes has also been extensively investigated [24]. A good understanding of the effect of adsorbent-adsorbent interactions on selective adsorption is essential as a foundation for selecting the best adsorbent and employing it in an optimal way. Hence, the aim of this research is to clarify the chemical and physical interferences between the two materials, namely tea waste and dolomite, when used for the removal of copper and methylene blue from aqueous solutions. In this paper, the term adsorption will refer to biosorption onto tea waste (TW) and adsorption onto dolomite (DO). Copper ions and methylene blue dye adsorption onto tea waste and dolomite using different factors, such as reaction contact time and pH of solution as well as initial metal and dye concentration on selective adsorption was examined. Recognizing the fundamental mechanisms and behaviour would be useful for practical multi-adsorbent packed columns.
2. Materials and Methods

2.1. Adsorbents and adsorbates

The two low cost materials used in this experiment were tea waste (TW) biosorbent and dolomite (DO) adsorbent. Fine Dolomite ($d_p < 50\mu$m) was supplied by Killwaughter Chemical Company, UK. The typical chemical composition of the dolomite in the deposit was 44% MgCO$_3$ and 53% CaCO$_3$ (obtained by XRD analysis) [25]. The tea waste biosorbent was collected from Queen’s University cafeteria; it was washed several times with hot water and dried in a conventional oven at 110 °C. The two adsorbents were comprehensively characterized in previous investigations [26, 27]. Copper(II) and Methylene Blue (MB) stock solutions were prepared by dissolving known amounts of CuSO$_4$·5H$_2$O and MB in deionised water. The stock solutions were then diluted to get various initial concentrations. All chemicals were purchased from Sigma Aldrich UK.

2.2. Adsorption Experiment

To investigate the influence of pH on Cu(II) and MB adsorption onto TW and DO, six sets of experiments were prepared: Cu(II) or MB with TW biosorbent; Cu(II) or MB with DO adsorbent and Cu(II) or MB with a mixture of 1:1 TW:DO (w/w%). Samples of 25 cm3 of adsorbate solutions with $C_o = 120$ and 100 mg/dm3 of Cu and MB, respectively, were adjusted to different pH values: 2–11. The same procedures were performed to study the effect of contact time and adsorption isotherms. The initial concentrations of Cu(II) for the contact time studies was 200 mg/dm3 and for MB it was 120 mg/dm3. For the adsorption isotherm studies, a concentration of: $C_o = 10–100$ mg/dm3 for Cu(II) and $C_o = 10–75$ mg/dm3 for MB were used. An adsorbent dose of 1 g/dm3 was used for all experiments at room temperature (~20 °C) and a contact time of 4 days to ensure reaching the equilibrium. There were no pH adjustments for contact time and isotherm experiments, so the experimental processes are more environmental friendly. The concentrations of Cu(II) and MB were
analysed using an ICP-OES Thermo Scientific IRIS and UV/Vis spectrophotometer (Perkin Elmer LAMBDA 25, UK), respectively. The amount of Cu(II) and MB adsorbed per unit mass of adsorbent q in (mg/g) and removal percentage were calculated using Eq. (1) and Eq. (2):

$$\text{The percentage removal} = \left[1 - \frac{C_e}{C_o}\right] \times 100\%$$ \hspace{1cm} (1)

$$q = \left[\frac{C_o - C_e}{M}\right] \times V$$ \hspace{1cm} (2)

Where C_o and C_e (mg/L) are the concentration of adsorbate at initial and equilibrium, respectively, M is the mass of adsorbent (g) and V is the volume (dm3).

2.3. Infrared and SEM measurement

The FT-IR analyses for TW and DO surfaces before and after Cu(II) and MB adsorption were carried out on a Perkin Elmer Spectrum 100 within the range of 400–4000 cm$^{-1}$. For the SEM analysis and Energy dispersive X-ray (EDX) analysis, TW and DO samples were coated with carbon and vacuumed (5–10 min) for electron reflection prior to analysis on a JEOL-JSM 6400 scanning microscope.
3. Results and Discussion

3.1. Effect of contact time

Figures S1 (a) and (b) are the plots of Cu(II) and MB removal against time for TW and DO materials, respectively. It can been seen that Cu(II) and MB were almost completely removed by dolomite and tea waste after 6 hrs at room temperature (20 ºC). The adsorption of Cu(II) and MB dye was fast in the initial stage due to the large number of available binding sites, resulting in a concentration gradient [28]. The removal rate gradually declined with time until equilibrium was achieved. The maximum removal efficiencies of copper ions and MB onto TW and DO were approx. 90% at pH of 5–7. The adsorption capacities of Cu(II) and MB were reduced when the two materials were mixed together; this reduction was more significant in the case of Cu(II). The adsorption capacity of the mixed adsorbent (TW:DO) was reduced to approx. 45% and 85% for Cu and MB, respectively. This reduction is attributed to the change in the sorbent and solution properties such as pH_{PZC} and pH_{equilibrium} [29]. However, results indicate that these pollutants can still be efficiently removed with high selectivity onto the mixed adsorbents.

3.2. Kinetics Modelling

The adsorption mechanism can be investigated using various adsorption kinetics models. The pseudo first-[30] and pseudo second-order [31] models (Eq. 3 and Eq. 4) have been employed to examine the experimental data for the adsorption of Cu(II) and MB by nonlinear regression. The pseudo first-order model equation is given as follow:

\[q_t = q_e (1 - e^{-k_1 t}) \]

(3)

The pseudo second-order equation is given as:

\[q_t = \frac{k_2 q_e^2}{(1 + k_2 q_e t)} \]

(4)

The second-order rate constants were used to calculate the initial sorption rate given by:
where \(k_1 (1/min) \) and \(k_2 (g/mg \text{ min}) \) are the rate constants for first order and second-order models.

The plots of \(q_t \) versus \(t \) and values of the constants of kinetic models obtained from the plots are given in Figure 1 and Table 1. From Table 1, the pseudo first- and pseudo second-order models fit the kinetic data with adequate accuracy \((R^2 > 0.897)\). However, the experimental data demonstrated more agreement with the pseudo second-order model in terms of closer \(q_{e,\text{cal}} \) values to \(q_{e,\text{exp}} \) and higher correlation coefficients than the pseudo first-order model.

This indicates that the chemical adsorption was the main control process for the TW and DO materials and the uptake capacity is proportional to the number of active sites [32]. Similar trends were reported for the removal of copper onto chitosan-coated sludge [33] and methylene blue onto magnetic graphenecarbon nanotube composite and polyaniline nanotubes base/silica [34, 35]. The rate constants \((k_1 \text{ and } k_2)\) for both Cu(II) and MB sorption onto the TW biosorbent are higher than that for the DO adsorbent. This indicates that it is faster for Cu(II) and MB−TW systems to reach a specific fractional uptake. Initial adsorption rate \((h)\) values for Cu(II) and MB sorption followed the same trends (Cu(II) \((89.07\text{−}110.9 \text{ mg/g min})\) and MB \((17.56\text{−}56.65 \text{ mg/g min})\). Also, the Elovich equation was used to evaluate the kinetic sorption data. The linear form of the Elovich equation is given in Eq. 6 below:

\[
q_t = \frac{1}{\beta} \ln(\alpha \beta) + \frac{1}{\beta} \ln(t)
\]

where \(\alpha \) is the initial adsorption rate \((\text{mg/g min})\), whilst \(\beta \) is the extent of surface coverage \((\text{g/mg})\) and activation energy of the process.

As can be seen in Table 1, the initial sorption rate \((\alpha)\) is lower in the case of sorption onto the DO system, similar to that of rate constants and initial sorption rate \((h)\) in the pseudo second-
order model. The Elovich equation did not fit the experimental data very well with the regression coefficient, R^2, within 0.659–0.877, suggesting that sorption systems of this study are maybe homogeneous.

3.3. Effect of solution pH

The pH parameter is associated with the adsorption mechanisms onto the adsorbent/biomass surfaces from water and determines the magnitude of the electrostatic charges [36]. From Figure 2, it can be observed that the uptake of Cu(II) onto the DO is significantly increased from 39% of removal at pH 2 to a maximum removal of 89% at pH 4.5. At this pH value, the main species of copper are Cu(II) free ions which are primarily involved in the removal process. With a pH value greater than 6, immediate precipitation of copper hydroxide takes place especially for high concentration of Cu(II) ions hindering the adsorption or biosorption processes [37]. The adsorption capacity of Cu(II) onto TW was notably lower at pH 4.5 with a maximum percentage removal of 39% at pH 5.5. The relatively lower Cu(II) removal onto TW can be attributed to the surface chemistry properties of TW such as; the surface point of zero charge. The PZC was previously determined to be pH = 4 [27] and had an important effect on the equilibrium (pH$_{\text{equilibrium}}$). For example, the Cu(II) solution with a pH$_o$ = 5.5 decreased to pH$_{eq}$ = 4.2 after being put in contact with TW for 4 days. Similar trends were observed for the biosorption of Cd(II) onto sawdust [1]. Also, it was found that the equilibrium pH for MB solution at pH$_o$ = 10 was reduce to pH$_{eq}$ = 8.8 when using the TW:DO mixed adsorbent. However, MB was efficiently removed by TW over the pH range studied, which is attributable to the electrostatic attraction between the negatively charged TW surface and the cationic MB dye molecules [38]. These results demonstrated that pH had little effect on the capacity of the TW:DO system, indicating that the system has good potential for practical use.
3.4. Equilibrium modelling

3.4.1. Langmuir Isotherm

The Langmuir isotherm assumes that the surface of the adsorbent is homogeneous, the adsorption energy is constant over all sites and each site can accommodate only one molecule or atom [39]. The Langmuir adsorption isotherm is given as [40]:

\[q_e = \frac{q_{max} b C_e}{1 + b C_e} \]

(7)

where \(q_{max} \) (mg/g) and \(b \) (dm\(^3\)/mg) are Langmuir constants associated with the capacity and energy of adsorption.

The fundamental characteristics of the Langmuir isotherm can be expressed by a dimensionless separation factor, \(R_L \), defined by:

\[R_L = \frac{1}{1 + (q_{max} \times b) C_o} \]

(8)

The \(R_L \) parameter indicates the shape of the isotherm as follows: \(R_L > 1 \), unfavourable; \(R_L = 1 \), linear; \(0 < R_L < 1 \), favourable; \(R_L = 0 \), irreversible.

3.4.2. Freundlich Isotherm

The Freundlich isotherm explains a particular phenomenon when the adsorption takes place on a heterogeneous surface [41]. The Freundlich isotherm model is given in Eq. 9:

\[q_e = K_F C_e^n \]

(9)

where \(K_F \) and \(n \) are the Freundlich constants.

The Langmuir and Freundlich isotherm constants obtained from non-linear regression fitting are revealed in Table 2. The Langmuir and Freundlich isotherms were able to represent adsorption of copper ions and methylene blue by both materials in different systems (Figure 3 & 4). The adsorption capacity of DO for Cu is significantly higher than TW and the trend is
reversed for MB. It can also be observed that the combination of TW and DO adsorbents will reduce the adsorption capacity towards Cu, while increasing the MB adsorption capacity (Table 2). In general, the sorption capacities were higher for MB than Cu, which may be due to the isotherm experiment being carried out without any pH adjustment. The dimensionless separation factor (R_L) values were close to zero in all cases. This indicates that the adsorption processes of Cu and MB were favourable at the investigated conditions. The R_L values approached zero when TW:DO systems were used demonstrating that the uptake of the Cu and MB in these systems was more favourable. The Freundlich constant, n values in the range of 1.061–3.764 confirmed the process is classified as favourable adsorption [42]. The closer $1/n$ is to zero, the greater the heterogeneity of the adsorbent [43].

3.5. Surface Characteristics of TW and Dolomite

3.5.1. SEM and EDX

The SEM images of the TW and DO samples before and after adsorption of Cu and MB are shown in (Figure 5); experimental conditions: C_0: MB = 120 at pH 7 and Cu = 200 at pH 4.4 and 6 hrs contact time). From Figure 5 (b) and (c), it can be noticed the formation of crystals at the surface of the DO sample after adsorption with Cu and MB. The presence of CuCO$_3$ is confirmed with the presence of small and abundant crystals on the surface of DO. The development of crystals in the case of the DO–MB sample also suggests the implication of surface precipitation in the case of MB removal by DO. Similar processes were identified by Walker et al. with the removal of Cu$^{2+}$ by half charred dolomite where surface complexation and precipitation were identified as the main removal route (See Figure 6 (a)) [25]. Surface precipitation of dye was reported in other studies and accounted for nearly 70% of dye removal when using lime treatment [44]. For the TW material, very little changes were observed between the samples before and after adsorption of MB and Cu. The absence of obvious surface structure change indicates that no surface precipitation is involved in the
removal of both pollutants by TW. The metal ions and dye molecules may bind to the active sites of the biosorbent through electrostatic attraction or hydrogen bonding (Figure 6 (b)). Heavy metals removal by TW is very often accounted to chemisorption while dyes removal by biosorbents or activated carbon is mainly described through physisorption with minor contribution from chemisorption mechanisms [27, 45]. Table 3 presents the EDX results obtained for the exhausted adsorbents after kinetic experiments. The area analysed was the one presented in Figure 5, focusing on the crystals formed in the case of DO–Cu or DO–MB or on the possibly larger area for the TW–Cu and TW–MB. The thin carbon layer required in the technique shifted all the results obtained for the C content. However, it can be seen that TW samples are carbon rich as expected and DO contains a substantial amount of C, partly accounted for the CO$_3^{2-}$ groups. The EDX method shows that Cu is present in the crystals formed at the surface of DO confirming the surface precipitation phenomenon. The presence of sulphur is probably due to the sulphate groups present in the Cu salt used in the experiment. The EDX technique cannot differentiate between the crystals formed and those in the DO structure. However, due to the experimental conditions, the nature of the copper crystals precipitated are identified as copper hydroxide crystals Cu(OH)$_2$ with potential existence of sulphate or carbonate groups [46]. The blue macroscopic colour of the DO sample after adsorption of copper confirms this identification. In the case of MB adsorption onto DO, the relatively high amount of sulphur can be accounted to the sulphur atoms present in the MB molecule. As the analysis area is focusing only on the crystals visible in Figure 5 (c), the value of nearly 7% sulphur has to be balanced. Regarding the TW–Cu sample, the presence of 4.3% Cu at the surface of the sample is equivalent to 43 mg/g of Cu adsorption capacity, which is very close to the adsorption capacity calculated in the kinetic experiments (Table 1). The EDX analysis in the present case was carried out over the total surface of the sample from Figure 5 (e) as no surface precipitation was noticed. The very low content of
sulphur on the TW–Cu sample indicates that the sulphate groups from the copper salt are not
adsorbed by the biosorbents. The copper sorption onto the TW surface is therefore very
selective. The higher content of sulphur on the surface of the TW–MB sample confirms the
adsorption of MB. The EDX technique confirmed the precipitation of both Cu and MB onto
the surface of DO and suggested that the sorption of these pollutants onto TW was either due
to chemisorption or physisorption.

3.5.2. FTIR analysis

Figure 7 illustrates the FTIR analysis of the DO samples before and after adsorption of MB
and Cu. The spectrum of the DO sample shows several peaks around 1400 cm\(^{-1}\) which are
related to the \(\text{CO}_3^{2-}\) groups and are attributed to the C–O bonds present in the sample [26].
Bands around 2500 cm\(^{-1}\) are assigned to water molecules bonded to the sample [36]. The net
peaks detected after the adsorption of MB found around 3414 cm\(^{-1}\) are attributed to OH\(^{-}\)
bonds and thus show the hydration of the DO sample and possible links with MB molecules
through chemisorption. The relatively high peak at 3430 cm\(^{-1}\) confirms the presence of
hydroxyl groups and the formation of Cu(OH)\(_2\) complexes. A sharp peak observable at 714
cm\(^{-1}\) after Cu sorption was also noticed by Ippolito et al. and attributed to the presence of
CaO [47]. The formation of complexes in the form of Ca/Cu-(OH)\(_x\) is thus highly probable. A
partial ion-exchange mechanism between Ca\(^{2+}\) and Cu\(^{2+}\) in the removal of copper from
wastewater was also reported by Walker et al. [25]. The FTIR analysis for the TW sample
shown in Figure 8, demonstrated major peaks indicating many functional groups such as
\(-\text{NH}_2\) and \(-\text{OH}\) groups of proteins and glucose; \(-\text{CH}\) stretching and \(\text{>C=O}\) ester stretching
vibration of triglycerides; this stretching mode conjugated with the \text{NH}_2 (amide 1 band) [27].
After MB adsorption onto TW two main peaks can be seen at 1383 and 1337 cm\(^{-1}\) and most
of the peaks already present are enhanced. The FTIR peaks characteristic of MB molecules
overlap with peaks from the TW sample as most chemical groups present in MB are present
The broad peak visible around 3230–3270 cm$^{-1}$ is linked to the N-H bonding from MB. The peaks around 1737 and 1160 cm$^{-1}$ account for the sulphate groups and are naturally present on the TW sample [48]. It is thus interesting to note that after Cu adsorption this peak is relatively high, thus indicating a sorption of the sulphate groups from the copper salt as well. Negatively charged ions are necessary to counter-balance the sorption of Cu$^{2+}$ onto TW, also SO$_4^{2-}$ is involved in this process. The sorption of both anions and cations is characteristics of physisorption where both ions co-habit in the diffuse layer [49]. EDX analysis coupled with FTIR investigation showed that surface complexation was the main route of removal for Cu and MB by DO. Using data from the pH study it can be concluded that physisorption was responsible for most of Cu and MB adsorption onto TW even if chemisorption was also contributing to the removal of MB by TW.

3.6. Comparison of adsorption capacity with composite adsorbents

A comparison was carried out between the results of the adsorption capacities of tea waste and dolomite multi-adsorbent system dyes and chemically prepared composite adsorbents towards copper ions and methylene blue (Table 4). Ignoring the different experimental conditions used, it can be seen that the adsorption capacities obtained in this study are comparable with those reported by other researchers. This indicates that tea waste and dolomite multi-adsorbents can be classified as one of the effective adsorption systems for this purpose. The two substances in this investigation were physically mixed without any chemical modifications. Once more, this implies that environmentally friendly composite adsorbents can be produced at low cost and very little effort without any chemical alterations.
4. Conclusion

The selectivity of tea waste and dolomite for copper and methylene blue and the influence of contact time, solution pH and initial pollutant concentration on adsorption capacities was examined. The adsorption kinetics could be explained by the pseudo-second-order model. The maximum removal capacity of Cu onto both adsorbents was achieved at pH = 4.5, while MB was optimally removed over the pH range studied with removal percentages of over 90%. The present investigation indicated that tea waste and dolomite can concurrently be effectively used to remove copper and methylene blue from aqueous solution. Further studies are required to examine the effect of the chemistry of solution and the design and scale-up of fixed-bed adsorption columns.
5. References

Table 1: Pseudo first-order and pseudo second-order model constants for Cu(II) and MB sorption onto tea waste and dolomite at different systems.

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Pseudo first-order model</th>
<th>Pseudo second-order model</th>
<th>Elovich equation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q_{exp} (mg/g)</td>
<td>q_{cal} (mg/g)</td>
<td>k_1 (1/min)</td>
</tr>
<tr>
<td>Cu TW</td>
<td>60.80</td>
<td>55.68</td>
<td>0.221</td>
</tr>
<tr>
<td>Cu DO</td>
<td>186.5</td>
<td>177.9</td>
<td>0.011</td>
</tr>
<tr>
<td>Cu TW + DO</td>
<td>82.09</td>
<td>74.23</td>
<td>0.480</td>
</tr>
<tr>
<td>MB TW</td>
<td>111.6</td>
<td>109.4</td>
<td>0.407</td>
</tr>
<tr>
<td>MB DO</td>
<td>67.75</td>
<td>57.70</td>
<td>0.126</td>
</tr>
<tr>
<td>MB TW + DO</td>
<td>107.7</td>
<td>102.6</td>
<td>0.486</td>
</tr>
</tbody>
</table>
Table 2: The Langmuir and Freundlich isotherm constants for Cu(II) and MB sorption onto tea waste and dolomite at different systems.

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Langmuir isotherm model</th>
<th>Freundlich isotherm model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q_{max} (mg/g)</td>
<td>b (dm3/mg)</td>
</tr>
<tr>
<td>TW</td>
<td>77.31</td>
<td>0.015</td>
</tr>
<tr>
<td>DO</td>
<td>237.7</td>
<td>0.022</td>
</tr>
<tr>
<td>TW + DO</td>
<td>38.2</td>
<td>0.239</td>
</tr>
<tr>
<td>TW</td>
<td>130.5</td>
<td>0.271</td>
</tr>
<tr>
<td>DO</td>
<td>113.3</td>
<td>0.018</td>
</tr>
<tr>
<td>TW + DO</td>
<td>150.4</td>
<td>0.262</td>
</tr>
</tbody>
</table>
Table 3: EDX analysis results expressed in % w/w.

<table>
<thead>
<tr>
<th>Sample</th>
<th>C</th>
<th>O</th>
<th>Mg</th>
<th>S</th>
<th>Ca</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO-Cu</td>
<td>22.80</td>
<td>29.88</td>
<td>2.77</td>
<td>4.33</td>
<td>14.55</td>
<td>25.66</td>
</tr>
<tr>
<td>DO-MB</td>
<td>18.42</td>
<td>43.33</td>
<td>6.64</td>
<td>6.21</td>
<td>25.40</td>
<td>-</td>
</tr>
<tr>
<td>TW-Cu</td>
<td>65.41</td>
<td>29.82</td>
<td>-</td>
<td>0.46</td>
<td>-</td>
<td>4.31</td>
</tr>
<tr>
<td>TW-MB</td>
<td>71.60</td>
<td>27.00</td>
<td>-</td>
<td>1.40</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4: Comparison of adsorption capacities of the TW:DO system with composite adsorbents in literature.

<table>
<thead>
<tr>
<th>Adsorbents</th>
<th>Pollutant</th>
<th>Adsorption capacity (mg/g)</th>
<th>Max conc. Studied</th>
<th>Best fit isotherm</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bentonite–polyacrylamide</td>
<td>Cu(II)</td>
<td>32.8</td>
<td>15 ppm</td>
<td>Langmuir</td>
<td>[2]</td>
</tr>
<tr>
<td>Ligand modified composite</td>
<td>Cu(II)</td>
<td>182.1</td>
<td>60 ppm</td>
<td>Langmuir</td>
<td>[14]</td>
</tr>
<tr>
<td>Alginate/Mauritanian clay (Na-ZS26)</td>
<td>Cu(II)</td>
<td>15.1</td>
<td>200 ppm</td>
<td>Langmuir</td>
<td>[15]</td>
</tr>
<tr>
<td>Tea waste + Dolomite</td>
<td>Cu(II)</td>
<td>38.1</td>
<td>100 ppm</td>
<td>Langmuir</td>
<td>Current study</td>
</tr>
<tr>
<td>Alumina-carbon</td>
<td>MB</td>
<td>1152.3</td>
<td>420 ppm</td>
<td>Redlich-Peterson</td>
<td>[10]</td>
</tr>
<tr>
<td>Magnetic graphene-carbon nanotube</td>
<td>MB</td>
<td>65.79</td>
<td>35 ppm</td>
<td>Langmuir</td>
<td>[34]</td>
</tr>
<tr>
<td>Polyaniline nanotubes base/silica</td>
<td>MB</td>
<td>10.3</td>
<td>10 ppm</td>
<td>Langmuir</td>
<td>[35]</td>
</tr>
<tr>
<td>Tea waste + Dolomite</td>
<td>MB</td>
<td>150.4</td>
<td>75 ppm</td>
<td>Langmuir</td>
<td>Current study</td>
</tr>
</tbody>
</table>
Figure 1: The fitting of pseudo first- and second-order models for Cr(II) and MB removal onto TW and DO.
Figure 2: Effect of pH on the removal of Cu(II) and MB onto TW and DO.
Figure 3: Non-linear forms of Langmuir and Freundlich adsorption isotherm plots of Cu adsorption onto Tea Waste (TW) and Dolomite (DO).
Figure 4: Non-linear forms of Langmuir and Freundlich adsorption isotherm plots of MB onto Tea Waste (TW) and Dolomite (DO).
Figure 5: SEM images of Dolomite and Tea Waste before adsorption experiments (a) and (d), after Cu adsorption (b) and (e) and after MB adsorption (c) and (f) respectively.
Figure 6: (a) Copper surface precipitation within cracks on dolomite (After Ref [25]) and (b) Metal ions and dye molecule removal through electrostatic attraction and hydrogen bonding (After Ref [45]).
Figure 7: FTIR spectra of DO before and after adsorption with Cu and MB, (a) full spectrum and (b) close up onto the 2000 to 450 cm\(^{-1}\) region. The spectra are normalised and un-shifted.

Figure 8: FTIR spectra of TW before and after adsorption with Cu and MB, (a) full spectrum and (b) close up onto the 2000 to 450 cm\(^{-1}\) region. The spectra are normalised and un-shifted.