Overestimated crash risks of young and elderly drivers

Published in:
American Journal of Preventive Medicine

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2014 American Journal of Preventive Medicine. Published by Elsevier Inc. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/, which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
OVERESTIMATED CRASH RISKS OF YOUNG AND ELDERLY DRIVERS

Jonathan J. Rolison, PhD, Salissou Moutari, PhD, Paul J. Hewson, PhD, Elizabeth Hellier, PhD

Background: Young and elderly drivers are reported to have markedly greater crash rates than drivers of other ages, but they travel less frequently and represent a minority of road users. Consequently, many crashes involving young or elderly drivers also involve drivers of middle age ranges who travel more frequently.

Purpose: To examine crash rates of young and elderly drivers, controlling for ages of all drivers involved in collisions.

Methods: A retrospective longitudinal study conducted on population-wide two-vehicle crashes reported in Great Britain from 2002 through 2010 for driver age ranges (17–20, 21–29, 30–39, 40–49, 50–59, 60–69, 70+ years) and individual driver ages among those aged 17–20 years. Annual trips made, recorded as part of a National Travel Survey, were used to estimate trip-based driver crash rates.

Results: Crash rates of drivers aged 17–20 years were not significantly different from crash rates of drivers aged 21–29 years (rate ratio=1.14; 95% CI=0.96, 1.33) when controlling for ages of both drivers involved in two-car collisions, and drivers aged 17 years had the lowest crash rate among drivers aged 17–20 years. Crash rates of drivers aged 70+ years equaled crash rates of drivers aged 60–69 years (rate ratio=1.00; 95% CI=0.77, 1.32) and were 1.40 times (95% CI=1.10, 1.78) lower than crash rates of drivers aged 50–59 years.

Conclusions: The current findings are in contrast with reports of high crash risks among young and elderly drivers, and suggest that previous reports may have overestimated the crash risks of these drivers by failing to control for ages of all drivers involved in collisions.
INTRODUCTION

In 2010, 1.24 million deaths worldwide were the result of motor vehicle crashes.1 The World Health Organization warns that if current trends continue, road traffic fatalities will become the fifth leading cause of death by 2030.1 Central to concerns for road safety are younger and older drivers who are reported to have markedly greater crash rates per mile driven or per trip made than drivers of other ages.2-5 Teenage drivers are reported to have fatal crash rates that are as much as 7 times the rate of drivers aged 30–59 years,2,3 and drivers aged 70+ are reported to have fatal crash rates in excess of 4 times those of drivers in middle age ranges.5 Policymakers have responded by proposing graduated licensing systems for teenagers to foster the development of driver experience in low-risk driving conditions.6,7 License renewal regulations have been enforced for older adults in response to reports of high crash rates among elderly drivers,8 and health care professionals are increasingly being called to assess the driving abilities of older adults.9

The majority of crashes that result in driver or passenger injury involve 2 vehicles. A total of 91,870 crashes in Great Britain in 2010 were between 2 vehicles, compared with 23,824 crashes involving a single vehicle and 27,460 crashes involving 3 or more vehicles.10 Younger and older drivers travel less frequently than drivers of other age ranges and represent a small proportion of road users.11 Drivers aged 17–20 years made 654 million trips in Britain in 2010 and drivers aged 70+ years made 2.12 billion trips in the same period, compared with 2.81, 4.72, 6.22, 3.21, and 4.66 billion trips made by drivers aged 21–29, 30–39, 40–49, 50–59, and 60–69 years, respectively.11 Thus, many crashes that involve younger and older drivers involve drivers
of other age ranges who travel more frequently. Crash rates by driver age control for risk exposure (e.g., trips made) but do not control for the travel of other drivers involved in the same collision. We hypothesized that previous reports have overestimated crash rates of young and elderly drivers and underestimated crash rates of drivers of the middle age ranges by failing to control for ages of all drivers involved in multiple-car collisions.

METHODS

Data Sources

For the current study we used population-wide motor vehicle crashes involving 2 vehicles recorded in Great Britain (England, Scotland, and Wales) from years 2002 through 2010, provided by the University of Essex Data Archive. The data were collected on location by police officials and include collisions involving one or more casualties. Casualties could include drivers, passengers, or pedestrians. The collision data were processed by the UK Department of Transport (DoT) before being made available for public consumption. Estimated annual trip numbers by gender, driver age range (17–20, 21–29, 30–39, 40–49, 50–59, 60–69, 70+ years) and for individual driver ages (17, 18, 19, 20 years) within the 17- to 20-year age range were used to measure driver exposure, provided by the UK DoT. The trip data were collected as part of the UK National Travel Survey for which approximately 20,000 respondents complete a 7-day travel diary to record their personal travel patterns. An invitation letter to participate in the survey is sent to a random sample of individuals based on their postcode address. A member of the UK National Travel Survey then personally delivers a travel diary to each respondent’s home and collects and checks the completed travel diary of each respondent. The annual response rate ranges between 55-60%. Short journeys less than 1 km in length are excluded from the data prior to being made available for public consumption.
Statistical Analysis

Trip-based crash rates

We conducted generalized Poisson log-linear regression modeling on crash counts involving 2 vehicles. In our analysis of driver age ranges, age (17–20, 21–29, 30–39, 40–49, 50–59, 60–69, 70+ years) was included as a factor, with year (2002–2010) as a covariate. Annual number of trips made by drivers of each age range was included as an offset term to control for driver exposure by age and to calculate trip-based crash rates. Thus, trip-based crash rates for each driver age, Agei, equaled total crashes by trips made, such that

\[
\text{crash rate}_{Agei} = \frac{\sum \text{total crashes}_{Agei}}{\text{trips}_{Agei}}. \quad (1)
\]

We assessed driver crash rates also for individual ages within the 17- to 20-year age range. For this analysis, driver age was categorized as 17, 18, 19, or 20 years and was included as a factor, with year (2002–2010) as a covariate. Annual number of trips made by drivers of each individual age was included as the offset term to calculate trip-based crash rates for each driver age. We also assessed driver crash rates for men and women aged 17 years and older by including gender as a factor, year (2002–2010) as a covariate, and annual number of trips made by men and women aged 17 years and older as the offset term.

Crash rates by driver age control for trips made but do not control for trips made by other drivers involved in the same collisions. We controlled for exposure by age of both drivers involved in collisions in our assessment of adjusted crash rates. In our log-linear regression model, crash counts were included by age of both drivers involved in collisions. Driver exposure by age of both drivers was calculated by computing the square root of the product of annual trips made by both driver ages involved in collisions. This was done to adjust for trips made by both
drivers and was included as an offset term to measure trip-based crash rates. This meant that the age range factor (17–20, 21–29, 30–39, 40–49, 50–59, 60–69, 70+ years) represented the trip-based crash rates of each driver age range after adjusting for exposure of both drivers involved in collisions. Thus, adjusted trip-based crash rates for each driver age, \(\text{Age}_i \), equaled the sum of crash counts involving each other driver age, \(\text{Age}_j \), divided by the square root of the product of trips made by both driver ages:

\[
\text{adjusted crash rate}_{\text{Age}_i} = \sum_{\text{Age}_j=1}^{n} \frac{\text{crashes}_{\text{Age}_i, \text{Age}_j}}{\sqrt{\text{trips}_{\text{Age}_i} \times \text{trips}_{\text{Age}_j}}}. \tag{2}
\]

In our assessment of adjusted crash rates of individual ages within the 17- to 20-year age range, crash counts by age of both drivers involved in collisions were included. Driver age was categorized as 17, 18, 19, or 20 years. For collisions in which the other driver involved in the collision was older than 20 years of age, age was categorized as 21–29, 30–39, 40–49, 50–59, 60–69, and 70+ years. Driver exposure, calculated as the square root of the product of annual trips made by both driver ages, was included as the offset term. Thus, adjusted crash rates for 17-, 18-, 19-, and 20-year-old drivers were assessed after controlling for ages of both drivers involved in collisions. In our assessment of adjusted crash rates of men and women, crash counts were included by gender of both drivers involved in collisions and driver exposure was the square root of the product of annual trips made by both driver genders.

Population-based crash count estimates

Reported crash counts in the population from years 2003 through 2010 were compared with crash counts estimated by crash rates of the period starting and ending one year earlier (2002 to 2009). Annual trip data for each driver age were substituted for each year in the crash rates of the previous year to estimate crash counts for the following year. Prediction error was defined as the
absolute difference between reported and estimated crash counts as a proportion of reported crash counts.

RESULTS

Trip-Based Crash Rates

Drivers aged 17–20 years had a crash rate that was 2.33 (95% CI, 2.22-2.44), 4.55 (95% CI, 4.35-4.55), and 5.88 (95% CI, 5.88-6.25) times greater than that of drivers aged 21–29, 30–39, and 40–49 years, respectively (Figure 1A; Table 1). The adjusted crash rate of drivers aged 17–20 was 1.14 (95% CI, 0.96-1.33), 1.56 (95% CI, 1.32-1.85), and 2.00 (95% CI, 1.69-2.38) times greater than that of drivers aged 21–29, 30–39, and 40–49 years, respectively (Figure 1A; Table 1). Thus, the adjusted crash rate of drivers aged 17–20 years was lower after controlling for age of both drivers involved in collisions and was not significantly different from the adjusted crash rate of drivers aged 21–29 years.

Drivers aged 70+ years had a crash rate that was 1.28 (95% CI, 1.18-1.33) and 1.14 (95% CI, 1.08-1.19) times greater than that of drivers aged 60–69 and 50–59 years, respectively (Figure 1A; Table 1). The adjusted crash rate of drivers aged 70+ years equaled the adjusted crash rate of drivers aged 60–69 years (rate ratio=1.00; 95% CI, 0.77-1.32) and was 1.40 times (95% CI, 1.10-1.78) lower than the adjusted crash rate of drivers aged 50–59 years (Figure 1A; Table 1). Thus, adjusted crash rates were not greater for older (i.e., 70+) adult drivers than for other age ranges after controlling for age of both drivers involved in collisions.

Drivers aged 17 years had a crash rate that was 1.18 (95% CI, 1.02-1.33), 1.32 (95% CI, 1.15-1.50), and 1.35 (95% CI, 1.19-1.54) times greater than that of drivers aged 18, 19, and 20 years, respectively (Figure 1B; Table 1). The adjusted crash rate of drivers aged 17 years was
instead 1.31 (95% CI, 1.44-1.50), 1.21 (95% CI, 1.05-1.39), and 1.21 (95% CI, 1.05-1.38) times lower than the adjusted crash rates of drivers aged 18, 19, and 20 years, such that drivers aged 17 years had the lowest crash rate among 17- to 20-year-olds after controlling for age of both drivers involved in collisions (Figure 1B; Table 1).

The crash rate of male drivers was 1.12 (95% CI, 1.10-1.15) times greater than for women (Table 1), and the adjusted crash rate of male drivers was 1.25 (95% CI, 1.01-1.56) times greater than for women. Thus, the adjusted crash rate of male drivers with respect to female drivers was greater after controlling for both driver genders involved in collisions as women overall made fewer trips than men (Table 1).

Population-Based Crash Count Estimates
Population-based crash count estimates for age ranges were more accurate overall when based on adjusted crash rates of the previous year (Figure 2A). Figure 2B shows that the prediction error for estimated crash counts was smaller for all age ranges (except drivers aged 30–39 years) when based on adjusted crash rates that controlled for ages of both drivers involved in collisions. Reductions in prediction error were largest for the youngest (17–20 years) and oldest (70+ years) drivers (Figure 2B). Regarding individual ages, crash count estimates were more accurate for 17-, 18-, 19-, and 20-year-old drivers when based on adjusted crash rates of the previous year (Figure 3A) and prediction error was also reduced for each driver age when based on adjusted crash rates (Figure 3B). Thus, adjusted crash rates for age ranges and individual ages were more accurate as a result of controlling for ages of both drivers involved in collisions.

DISCUSSION
Young and elderly drivers travel less frequently than people in other age ranges and represent a minority of road users. Many crashes that involve younger and older drivers as a result involve
drivers of middle age ranges who travel more frequently. Crash rates control for driver exposure by age but do not control for the travel of other drivers involved in the same collision. Our analysis suggests that previous reports may have overestimated crash rates of young and elderly drivers and underestimated crash rates of drivers in middle age ranges by failing to account for ages of all drivers involved in multiple-car collisions (Figure 1). Furthermore, estimates of crash counts in the population were more accurate when based on adjusted crash rates of the previous year that controlled for ages of all drivers involved in collisions (Figures 2 and 3).

Policymakers around the world have responded to reports of high crash rates among young drivers by recommending graduated licensing systems and educational interventions for teenagers to encourage the development of driver skill. Our study shows that crash rates of young drivers may have been overestimated in previous reports. Adjusted crash rates of drivers aged 17–20 years did not differ significantly from the adjusted crash rate of drivers aged 21–29 years (Figure 1A) and were lowest for 17-year-olds among drivers aged 17–20 years (Figure 1B). In Great Britain, youngest drivers are charged a high premium according to the engine capacity of their vehicle, which restricts youngest drivers to lower performance cars. Crash risks are linked to driving speed, suggesting that insurance restrictions may reduce crash risks among youngest drivers. Adjusted crash rates reduced smoothly across age ranges (Figure 1A), indicating that driver skill may develop more gradually than currently believed. We recommend that in addition to promoting policies that target young drivers, policymakers should consider the benefits of prolonged driver training initiatives, such as advanced driver training courses and further driver assessments for developing driver skill.

License renewal regulations for older adults have been tightened by policymakers in response to reports of high crash rates among elderly drivers. The American Medical
Association now encourages physicians to screen older adults for cognitive and visual impairment that might affect driver safety, charging medical practitioners with difficult decisions about the driving privileges of older adults. Age-based testing discourages unimpaired elderly drivers from renewing their driver license, which compromises mobility with direct effects on well-being and multiple health outcomes. Our results show that adjusted crash rates were not greater for elderly drivers, which signifies that the strong emphasis on license renewal regulations and screening of older adults may be misplaced. Adjusted crash rates for drivers aged 70+ years equaled those of drivers aged 60–69 years and were lower than the adjusted crash rates of drivers aged 50–59 years (Figure 1A).

In Great Britain, 83% of car crashes in 2010 involved 2 or more vehicles. Failure to control for ages of all drivers involved in collisions in previous studies may have biased estimates of driver crash rates. Biases in crash rate estimates can occur whenever drivers involved in multiple car collisions differ in their travel patterns. Women make fewer trips than men each year as drivers, and as a result we found that the crash rate of female drivers was lower with respect to male drivers after controlling for both driver genders involved in collisions.

The present study has a number of limitations. First, our measures of exposure were based on annual trips made by drivers and controlled for neither the length of journey nor the nature of trips made (e.g., leisure, work commute), for which there may be systematic differences with age. Second, in our analysis of 2 vehicle collisions we did not account for which driver was most likely at fault. Skill level, inexperience, and risk taking behaviors are associated with increased crash risks among younger drivers, and cognitive limitations and visual impairment have been linked to driver error in older age. Age differences in the degree to which drivers are the cause of their collisions may have affected our age comparisons. Third, the
reliability of crash data used in our study depend on crashes being accurately reported by police
officials, and the reliability of our exposure data depend on respondents to a national travel
survey accurately recording their personal travel patterns. Any inaccuracies in our data, however,
should not have differed systematically with age or gender of the driver, and thus should not
have affected our main findings. The data used in our current analysis represents the most
accurate road safety data available in Great Britain.

Our current findings suggest that previous reports may have overestimated the crash rates
of young and elderly drivers by failing to account for ages of all drivers involved in multiple-car
collisions. We focused our current investigation on 2 vehicle crashes in Great Britain over a 9
year period (years 2002-2010). Before strong claims can be made about the generality and
robustness of our findings, further investigations are needed to assess adjusted crash rates in
other countries that adopt different road safety policies. We currently investigated all 2 vehicle
crashes involving at least one casualty. It is important to further demonstrate that our findings
can be replicated for both fatal and non-fatal driver casualties.

The World Health Organization reported that 1.24 million deaths worldwide in 2010
were the result of motor vehicle crashes and warns that road traffic injuries will become the fifth
leading cause of death by 2030. We recommend that policymakers consider prolonged training
programs and assessment initiatives in addition to policies targeting young drivers. We urge
policymakers to focus public health initiatives on safeguarding all road users, noting that elderly
pedestrians represent the majority of road traffic deaths.
REFERENCE LIST

Table 1. Trip-Based Relative Risk for Crashes by Driver Age in Great Britain, 2002–2010.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Crash Counts</th>
<th>Trips, ×10 Million</th>
<th>Crash Rate</th>
<th>Adjusted Crash Rate</th>
<th>Relative Risk Crash Rate</th>
<th>Adjusted Crash Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>17–20 years</td>
<td>10 322</td>
<td>67.48</td>
<td>157.06</td>
<td>71.81</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>21–29 years</td>
<td>18 827</td>
<td>284.93</td>
<td>67.47</td>
<td>63.56</td>
<td>0.43 (0.41-0.45)</td>
<td>0.88 (0.75-1.04)</td>
</tr>
<tr>
<td>30–39 years</td>
<td>19 002</td>
<td>544.17</td>
<td>35.22</td>
<td>46.16</td>
<td>0.22 (0.22-0.23)</td>
<td>0.64 (0.54-0.76)</td>
</tr>
<tr>
<td>40–49 years</td>
<td>15 584</td>
<td>610.91</td>
<td>26.07</td>
<td>35.95</td>
<td>0.17 (0.16-0.17)</td>
<td>0.50 (0.42-0.59)</td>
</tr>
<tr>
<td>50–59 years</td>
<td>10 310</td>
<td>467.93</td>
<td>22.44</td>
<td>27.11</td>
<td>0.14 (0.14-0.15)</td>
<td>0.38 (0.31-0.46)</td>
</tr>
<tr>
<td>60–69 years</td>
<td>5775</td>
<td>292.83</td>
<td>20.28</td>
<td>19.32</td>
<td>0.13 (0.12-0.14)</td>
<td>0.27 (0.22-0.34)</td>
</tr>
<tr>
<td>70+ years</td>
<td>4622</td>
<td>187.27</td>
<td>25.45</td>
<td>19.36</td>
<td>0.16 (0.15-0.17)</td>
<td>0.27 (0.21-0.34)</td>
</tr>
<tr>
<td>17 years</td>
<td>1563</td>
<td>8.07</td>
<td>195.75</td>
<td>16.66</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>18 years</td>
<td>3162</td>
<td>18.99</td>
<td>167.31</td>
<td>21.86</td>
<td>0.85 (0.75-0.98)</td>
<td>1.31 (1.44-1.50)</td>
</tr>
<tr>
<td>19 years</td>
<td>2999</td>
<td>20.61</td>
<td>148.83</td>
<td>20.10</td>
<td>0.76 (0.67-0.87)</td>
<td>1.21 (1.05-1.39)</td>
</tr>
<tr>
<td>20 years</td>
<td>3088</td>
<td>21.64</td>
<td>144.30</td>
<td>10.99</td>
<td>0.74 (0.65-0.84)</td>
<td>1.21 (1.05-1.38)</td>
</tr>
<tr>
<td>Women</td>
<td>28 181</td>
<td>1 096.66</td>
<td>25.71</td>
<td>24.36</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Men</td>
<td>39 358</td>
<td>1 357.04</td>
<td>28.87</td>
<td>30.51</td>
<td>1.12 (1.10-1.15)</td>
<td>1.25 (1.01-1.56)</td>
</tr>
<tr>
<td>Overall</td>
<td>46 531</td>
<td>2 455.51</td>
<td>18.95</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note. Crash counts and estimated trip numbers are average annual figures from 2002 through 2010 for Great Britain supplied by the UK Department of Transport. Crash counts are population-wide motor vehicle crashes involving 2 vehicles and represent the total number of crashes involving a driver of each age range (21–29, 30–39, 40–49, 50–59, 60–69, and 70+ years), individual age (17, 18, 19, and 20 years), and gender. Stratifying 2 vehicle-crashes (e.g., by age or gender) results in some double counting of collisions. For example, a single crash involving a 17 year old driver and an 18 year old driver is counted both in the crash counts of 17 year olds and in the crash counts of 18 year olds. This causes total crash counts across subgroups to vary according to the number stratified subgroups. Estimated trip numbers were collected as part of the UK National Travel Survey. Crash rates for each driver age (or gender) control for number of trips made; adjusted crash rates for each driver age (or gender) control for number of trips made by both drivers involved in collisions. All crash rates and adjusted crash rates were estimated from our regression analyses, except the overall crash rate estimate. Trip numbers are Figures in parenthesis for
relative risks indicate 95% confidence intervals. Relative risks for drivers aged 17–20 years and drivers aged 17 years are the reference groups.