Pre-clinical development of a combination microbicide vaginal ring containing dapivirine and darunavir

Published in:
Journal of Antimicrobial Chemotherapy

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Pre-clinical development of a combination microbicide vaginal ring containing dapivirine and darunavir

Diarmaid J. Murphy1, Delphine Desjardins2,3, Nathalie Dereudre-Bosquet2,3, Patricia Brochard2,3, Ludivine Perrot2,3, Alain Pruvost4, Roger Le Grand2,3, Ole Vanhooren5, Maxim Feyaerts5, Jens van Roey5 and R. Karl Malcolm1*

1School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; 2CEA, Division of Immuno-Virology, DSV/iMETI, IDMIT Center, 18 route du Panorama, F92265 Fontenay-aux-Roses, France; 3UMR-E1, Paris Sud University-11, Orsay, France; 4Commissariat à l’Energie Atomique, iBiTecS, SPI, Laboratoire d’Étude du Métabolisme des Médicaments, F-91191 Gif-sur-Yvette, France; 5Janssen Diagnostics, Turnhoutseweg 30, 2340 Beerse, Belgium

*Corresponding author. Tel: +44-0(28)-9024-7779; Fax: +44-0(28)-9097-2319; E-mail: k.malcolm@qub.ac.uk

Received 19 January 2014; returned 25 February 2014; revised 4 April 2014; accepted 10 April 2014

Objectives: Combination microbicide vaginal rings may be more effective than single microbicide rings at reducing/preventing sexual transmission of HIV. Here, we report the pre-clinical development and macaque pharmacokinetics of matrix-type silicone elastomer vaginal rings containing dapivirine and darunavir.

Methods: Macaque rings containing 25 mg dapivirine, 100 mg dapivirine, 300 mg darunavir or 100 mg dapivirine + 300 mg darunavir were manufactured and characterized by differential scanning calorimetry. In vitro release was assessed into isopropanol/water and simulated vaginal fluid. Macaque vaginal fluid and blood serum concentrations for both antiretrovirals were measured during 28 day ring use. Tissue levels were measured on day 28. Ex vivo challenge studies were performed on vaginal fluid samples and IC50 values were calculated.

Results: Darunavir caused a concentration-dependent reduction in the dapivirine melting temperature in both solid drug mixes and in the combination ring. In vitro release from rings was dependent on drug loading, the number of drugs present and the release medium. In macaques, serum concentrations of both microbicides were maintained between 101 and 102 pg/mL. Vaginal fluid levels ranged between 103 and 104 ng/g and between 105 and 106 ng/g for dapivirine and darunavir, respectively. Both dapivirine and darunavir showed very similar concentrations in each tissue type; the range of drug tissue concentrations followed the general rank order: vagina (1.8 × 103 – 3.8 × 103 ng/g) > cervix (9.4 × 101 – 3.9 × 102 ng/g) > uterus (0–108 ng/g) > rectum (0–40 ng/g). Measured IC50 values were > 2 ng/mL for both compounds.

Conclusions: Based on these results, and in light of recent clinical progress of the 25 mg dapivirine ring, a combination vaginal ring containing dapivirine and darunavir is a viable second-generation HIV microbicide candidate.

Keywords: HIV microbicides, silicone elastomer vaginal rings, cynomolgus macaques, pharmacokinetics

Introduction

Over the past 20 years, various vaginally administered products have been evaluated as topical microbicides for reduction or prevention of sexual transmission of HIV type 1 (HIV-1), although none has yet reached market. More recently, owing to lack of efficacy, focus has shifted away from microbicide compounds with non-specific mechanisms of action and towards more potent antiretroviral (ARV) drugs, similar to those used in highly active antiretroviral therapy (HAART) and targeted at specific steps in the HIV replication cycle. Various lead candidate microbicide products containing a single ARV drug are now progressing through clinical development, including a dapivirine-releasing vaginal ring,1–3 a tenofovir-releasing vaginal ring4 and an aqueous tenofovir gel.5 Following the combinatorial drug approach established with HAART,6 next-generation microbicides will also likely be combination drug products or multipurpose prevention technologies, containing multiple ARV drugs or a combination of ARV, contraceptive and/or antimicrobial agents, respectively.7 There are good reasons for pursuing combination microbicides. Compared with a single ARV drug, they may offer: (i) increased breadth of activity against emerging resistant viral strains;
Manufacturing machine. For batch manufacture of each ring formulation, the required quantities of dapivirine and darunavir were added to both parts A and B of the silicone elastomer system in polypropylene containers. After mixing at 2000 rpm for 5 min (SpeedMixer™ DAC 150.1 FVZ-K, Synergy Devices Ltd, UK), the containers were degassed in a vacuum chamber (0.143 Torr held for 30 min; LACO Technology, Salt Lake City, UT, USA), and then stored sealed at 4°C for 60 min. Parts A and B of the silicone/drug mixture were combined in a 1:1 ratio and mixed (3000 rpm for 30 s) before being injected into pre-heated (80°C), precision-engineered, stainless steel, vaginal ring moulds and cured for 3 min. Each ring weighed ~1.8 g.

Materials and methods

Materials

Medical grade, addition-cure, silicone elastomer two-part kit (LSR9-9509-30; also known as DDU-4320) was supplied by NuSil Silicone Technology Inc. (Carpinteria, CA, USA). Darunavir and dapivirine were kindly provided by Janssen Research and Development (Beese, Belgium) and the International Partnership for Microbicides (IPM; Silver Spring, MD, USA), respectively. HPLC-grade acetonitrile, isopropanol (IPA), methanol, dichloromethane, trifluoroacetic acid (TFA) and 19-norethindrone were obtained from Sigma–Aldrich (Gillingham, UK). Simulated vaginal fluid (SVF; pH 4.2) was prepared using analytical grade reagents according to a method described previously. Delonized water, resistivity >18 mΩ cm², was obtained from a Millipore Direct-Q3 UV Ultrapure water system (Watford, UK).

Ring manufacture

Macaque-sized, matrix-type, silicone elastomer vaginal rings (25 mm outer diameter and 6 mm cross-sectional diameter) containing various loadings of dapivirine (25 and 100 mg), darunavir (300 mg) and their combination (100 mg dapivirine + 300 mg darunavir) were manufactured by reaction injection moulding on a custom laboratory-scale ring
A combination microbicide vaginal ring

Pharmacokinetic study in macaques

A pharmacokinetic study in adult female cynomolgus macaques (weight range 3–7 kg) was performed at Commissariat à l’Energie Atomique (CEA), IDMIT infrastructure. Non-human primates (which include Macaca fascicularis) are used at the CEA in accordance with French national regulations and under the supervision of national veterinary inspectors (CEA Permit Number A 92-032-02). The CEA complies with the Standards for Human Care and Use of Laboratory Animals, of the Office for Laboratory Animal Welfare (OLAW, USA) under OLAW Assurance number #A5826-01. All experimental procedures were conducted according to European guidelines for animal care (European directive 86/609, ‘Journal Officiel des Communautés Européennes’, L358, December 18, 1986). The use of non-human primates at the CEA is also in conformity with the recommendations of the newly published European Directive (2010/63, recommendation No. 9). The animals were used under the supervision of the veterinarians in charge of the animal facility. This study was scientifically reviewed and approved by the EU FP7 Combined Highly Active Antiretroviral Microbicide (CHAARM) programme and was accredited under statement numbers 10-062, by the ethics committee Comité d’Éthique en Expérimentation Animale du CEA registered under number 44 by the French Ministry of Research. Four animals were used per ring treatment and there was no pre-treatment with Depo-Provera (medroxyprogesterone acetate). Following atraumatic ring insertion into the vagina under anaesthesia on day 0, blood (serum) and vaginal fluid were collected at 8, 24 and 48 h and after 7, 14 and 28 days (Table 2). Blood was sampled into either EDTA tubes (for haematology) or dry tubes (for drug quantification). Vaginal fluid sampling was performed using Weck-Cel® spears (Medtronic Ophthalmics, Jacksonville, FL, USA) based on a previously described method. A sample collection set containing the Weck-Cel® spear head plus a collection microtube was housed within a sterile 50 mL polypropylene tube. Each sample collection tube was pre-weighed and labelled for each animal. Sample collection sets containing the Weck-Cel® spear were stored on ice at 2–8°C until sample collection. The Weck-Cel® spear was placed in the vaginal vault for 1–2 min to absorb the fluid. The spear head was then cut and placed into the collection microtube. After closure of its lid, the microtube was placed back into the corresponding outer tube. The stem of the spear was placed into the outer tube and the sample collection set was placed back on ice. Fluid samples were returned to the laboratory for processing within 2 h of collection. The sample collection set was removed from ice, the exterior of the tube cleaned and weighed on a fine balance. The collection tube containing the Weck-Cel® spear heads was removed and stored at −80°C until further analysis. Progesterone concentrations in serum were quantified using a progesterone ELISA kit (RES5231, IBL International, Germany) at baseline and on days 7, 14 and 28 to determine the phase of menstrual cycle during ring placement. Animals were necropsied on day 28 and three further analysis. Progesterone concentrations in serum were quantified based on a previously described method. A sample collection set was pre-weighed and labelled for each animal. Sample collection sets containing the Weck-Cel® spear were stored on ice at 2–8°C until sample collection. The Weck-Cel® spear was placed in the vaginal vault for 1–2 min to absorb the fluid. The spear head was then cut and placed into the collection microtube. After closure of its lid, the microtube was placed back into the corresponding outer tube. The stem of the spear was placed into the outer tube and the sample collection set was placed back on ice. Fluid samples were returned to the laboratory for processing within 2 h of collection. The sample collection set was removed from ice, the exterior of the tube cleaned and weighed on a fine balance. The collection tube containing the Weck-Cel® spear heads was removed and stored at −80°C until further analysis. Progesterone concentrations in serum were quantified using a progesterone ELISA kit (RES5231, IBL International, Germany) at baseline and on days 7, 14 and 28 to determine the phase of menstrual cycle during ring placement. Animals were necropsied on day 28 and three tissue draining lymph nodes and distal lymph nodes) were taken and frozen at −80°C. Biological samples were shipped on dry ice to CEA Gif-sur-Yvette for quantification of dapivirine and darunavir by HPLC tandem mass spectrometry (HPLC-MS/MS).

Quantification of dapivirine and darunavir in biological samples

Dapivirine and darunavir were quantified in macaque vaginal fluid, serum and tissue by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Dapivirine-d11 and darunavir-d9 (Toronto Research Chemicals, Canada) were used as internal standards. Vaginal fluid and serum sample preparation was performed as previously described. Frozen tissue samples (around 50 mg) from necropsied animals were homogenized in 1 mL of ice-cold methanol/TriS 0.05 M/HCl pH 5; 70/30 (v/v) containing internal standard, using a Precellys tissue homogenizer (Bertin Technologies, France). Cellular debris was removed by spinning at 20000 g for 15 min at 4°C and transferring the supernatant to a fresh tube. Samples were then evaporated to dryness at 40°C with a nitrogen stream in a Turbovap LV evaporator (Biotage, UK) and re-suspended in 150 μL of initial mobile phase. The extract sample was transferred to a vial, and a 20 μL aliquot was injected into the chromatographic system. LC-MS/MS conditions were the same for the analysis of vaginal fluid, serum and tissue samples. The calibration ranges for the bioanalytical assays were 14–2000 pg/mL, 0.400–500 ng (i.e. ~20–25000 ng/g) and 1–2000 ng (i.e. ~20–25000 ng/g) for dapivirine and darunavir in serum, vaginal fluid and tissue samples, respectively. The extract samples maintained at 4°C in the autosampler were chromatographically separated using a Waters ACQUITY UPLC® System with an ACQUITY UPLC BEH RP18 shield, 2.1×100 mm, 1.7 μm column and a reversed phase gradient over a run time of 5 min. Initial conditions consisted of mobile phase A (0.4% ammonium in water) and mobile phase B (acetonitrile) at 70/30 (v/v) with a column temperature of 40°C and a flow rate of 0.400 mL/min. The gradient conditions ramped from 30% B to 100% B between 1.0 and 2.0 min, then maintained up to 2.8 min, ramped to 30% in 0.01 min and then maintained up to 5 min for re-equilibration. The MS analysis was performed on a Waters Xevo™ TQ-MS mass spectrometer operated in positive ion electrospray multiple-reaction monitoring mode (MRM) mode. Briefly, main tune parameters were as follows: capillary voltage was set up at 3 kV, source temperature was 150°C, desolvation temperature was 350°C, cone gas flow was 50 L/hour and desolvation gas flow was 650 L/h. The analytes and their corresponding internal standards were specifically monitored using a pair value cone voltage (V)/collision energy (eV) set at 55/36 and 25000 ng/g) and 1–2000 ng (i.e. ~20–25000 ng/g) for dapivirine and darunavir in serum, vaginal fluid and tissue samples, respectively. The extract samples maintained at 4°C in the autosampler were chromatographically separated using a Waters ACQUITY UPLC® System with an ACQUITY UPLC BEH RP18 shield, 2.1×100 mm, 1.7 μm column and a reversed phase gradient over a run time of 5 min. Initial conditions consisted of mobile phase A (0.4% ammonium in water) and mobile phase B (acetonitrile) at 70/30 (v/v) with a column temperature of 40°C and a flow rate of 0.400 mL/min. The gradient conditions ramped from 30% B to 100% B between 1.0 and 2.0 min, then maintained up to 2.8 min, ramped to 30% in 0.01 min and then maintained up to 5 min for re-equilibration. The MS analysis was performed on a Waters Xevo™ TQ-MS mass spectrometer operated in positive ion electrospray multiple-reaction monitoring mode (MRM) mode. Briefly, main tune parameters were as follows: capillary voltage was set up at 3 kV, source temperature was 150°C, desolvation temperature was 350°C, cone gas flow was 50 L/hour and desolvation gas flow was 650 L/h. The analytes and their corresponding internal standards were specifically monitored using a pair value cone voltage (V)/collision energy (eV) set at 55/36 and 22/12 for dapivirine and darunavir, respectively. Monitored MRM transitions were m/z 330.13/158.06, 341.16/168.08, 548.20/392.20 and 557.20/401.20 for dapivirine, dapivirine-d11, darunavir and darunavir-d9, respectively. Each transition was alternately monitored with a dwell time of 0.04 s while quadrupole resolution in both Q1 and Q3 was set at 0.7 FWHM. Under these UPLC-MS/MS conditions, dapivirine/dapivirine-d11 and darunavir/darunavir-d9 displayed mean retention times of 2.8 and 2.4 min, respectively.

Pre- and post-use content of dapivirine and darunavir rings

The initial and residual dapivirine and darunavir content of rings was quantified following manufacture and after completion of both in vitro release and in vivo pharmacokinetic testing in macaques (n=4). Rings were cut into pieces of ~2 mm diameter and placed into a glass flask. Dichloromethane (95 mL) was added along with 5 mL of a 1 or 2 mg/mL solution of 19-norethindrone (depending on the initial drug loading in the ring) in methanol as internal standard. The flasks were sealed and placed in an orbital incubator (Infors HT Unitor, Switzerland; 37°C,...

Table 2. Timepoints for collection of biological samples from macaques during period of ring placement

<table>
<thead>
<tr>
<th>Sampling procedure</th>
<th>0</th>
<th>0.3</th>
<th>1</th>
<th>2</th>
<th>7</th>
<th>14</th>
<th>21</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaginal fluid (for drug quantification)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Blood (for drug serum quantification)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Blood for progesterone quantification</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Blood (for blood cell formula testing)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Tissue (for drug quantification)</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
60 rpm, throw 25 mm) for 72 h. One or two millilitres of the extraction mixture (again, dependent upon drug loading) was transferred to a boiling tube and evaporated to dryness. The residue was reconstituted in 10 mL of methanol with vortex mixing for 30 s and sonication for 20 min to ensure complete drug dissolution. Samples were analysed by HPLC with detection by UV absorbance at 257 nm. A 10 μL aliquot of each sample was injected onto a Phenomenex® Luna 5 μm C18(2) 100 Å column (150×4.6 mm; Phenomenex, Cheshire, UK) held at 30°C. HPLC was conducted in isocratic mode with a mobile phase of HPLC-grade water (25%) and HPLC-grade methanol (75%) at a flow rate of 0.75 mL/min. Under these conditions dapivirine, darunavir and norethindrone had mean retention times of 9.5, 3.5 and 5.1 min, respectively.

Ex vivo challenge studies on vaginal fluid samples

Vaginal fluid samples from the macaque pharmacokinetic study were extracted into 60% acetonitrile containing 0.04% ammonium hydroxide in water and shipped on dry ice to Janssen Diagnostics for in vitro testing of antiretroviral compound activity. The MT4-CCR5high-LTR-eGFP cell line (overexpression of CCR5 co-receptor) was kindly provided by Dr Olivia Goethals (Janssen Infectious Diseases and Vaccines). Cells were maintained in RPMI 1640 medium (Lonza) supplemented with 10% FetalClone® II serum (Sigma), 0.04% gentamicin (Gibco) and 1% Geneticin (Gibco) in a humidified incubator at 37°C, 4.5% CO2. BaL virus (CCR5-tropic HIV-1 strain) was supplied by Advanced Biotechnologies Inc. Antiretroviral activity was determined using a cell-based HIV-1 green fluorescent protein reporter assay. A 3-fold dilution series of the extracted samples in culture medium (without Geneticin, supplemented with 2% DMSO) was made in 96-well plate format, with compound dilution determined based on the initial ring loading. MT4-CCR5high-LTR-eGFP cells (75 μL/well) and BaL virus (75 μL/well) were added to the dilution plate (50 μL/well) with a multiplicity of infection of 0.0025. By means of a liquid handler (MICROLAB® STAR; Hamilton Robotics) the 96-well assay plate was transferred to a 384-well plate (40 μL/well) for readout after 3–4 days storage. Infection of MT4-CCR5high-LTR-eGFP cells with Bal. virus causes activation of the long terminal repeat promoting expression of enhanced green fluorescent protein. The fluorescence signal was measured with a fluorescence scanning microscope (Axio Vert.A1, Zeiss). The extent of inhibition of viral infection was determined as the level of fluorescence measured relative to positive controls (cells with virus, no ARVs added) correcting for basal levels observed (cells with no virus or ARVs added). Dose–response curves and IC50 values were calculated using GraphPad Prism.

Statistical analyses

Where appropriate, results were statistically analysed using a one-way analysis of variance, followed by post hoc analysis using the Tukey–Kramer multiple comparisons test. In all cases, a P value of <0.05 was considered significant. Analysis was conducted using GraphPad Prism.

Results and discussion

DSC data

DSC thermograms and data obtained from the various dapivirine/darunavir solid mixtures are presented in Figure 1(a) and Table 3, respectively. Dapivirine showed a primary crystalline melting transition at 220°C (Table 3, Peak 2). Darunavir showed a thermal transition around 100°C, caused by desolvation (i.e. evaporation of ethanol) from the crystalline form (darunavir is an ethanolate pseudo-polymorph) and subsequent formation of the liquid drug.

Figure 1. (a) Overlaid DSC traces of dapivirine (DAP) and darunavir (DRV) mixed in varying proportions. (b) Plot illustrating the depression of DAP onset melting temperature in the solid drug mixtures as a function of DRV concentration. (c) Overlaid DSC traces for 100 mg DAP ring and 100 mg DAP+300 mg DRV ring.
form. At intermediate compositions, the darunavir melting temperature remained unchanged while the dapivirine melting temperature decreased and the melting endotherm peak broadened in proportion to increasing concentrations of darunavir in the mixture (Figure 1a and Table 3). The dapivirine thermal behaviour is attributed to the entropy-driven phenomenon of melting point depression (Figure 1b) associated with addition of a liquid impurity (i.e. the melted, desolvated form of darunavir). Melting point depression in two- (or multi-) component systems is directly attributed to intermolecular interactions. Often, these intermolecular interactions are hydrogen bonds, which are believed to be highly significant in melting point depression. It has already been established that dapivirine forms two hydrogen bonds with Lys101 at the HIV-1 reverse transcriptase binding site and exhibits strong π–π stacking or H…π interaction with Tyr181 and Tyr188 residues. These interactions play a vital role in stabilizing the dapivirine + enzyme complex. Based on these data, it is likely that the melting point depression for the dapivirine/darunavir system is attributed to hydrogen bonding, since both molecules have considerable scope for this type of intermolecular bonding.

Silicone elastomer samples containing various concentrations of either dapivirine or darunavir alone showed endothermic peaks at the normal crystalline melting temperature for each drug, and with peak areas (enthalpy values) correlating with the drug loading. By way of example, a 100 mg dapivirine ring sample is presented in Figure 1c. A silicone elastomer sample prepared with dapivirine and darunavir concentrations equivalent to those in the 100 mg dapivirine + 300 mg darunavir macaque ring [5.88% and 17.6% (w/w), respectively] showed the normal melting endotherm for darunavir. However, the normally sharp dapivirine crystalline melting transition at 220°C was not observed, being replaced by a broader melting endotherm at 150–200°C (Figure 1c), similar to that observed for the solid drug mixtures (Figure 1a).

A number of combination drug products are deliberately formulated such that the melting point of each drug in the system is depressed compared with the original drug material. Often, the final drug ratio is selected to correspond to the minimum melting temperature in the temperature–composition phase diagram, since this so called eutectic composition leads to increased solubility of each drug (and therefore improved release/dissolution). EMIL (a eutectic mixture of lidocaine and prilocaine) and Nuvaring® (a combination contraceptive vaginal ring) represent two examples of marketed drug products formulated using a eutectic mixture of two different drug molecules. In the absence of other degradative drug–drug interactions, eutectic (or decreased melting temperature) systems do not pose any additional manufacturing or stability issues for pharmaceutical products.

In vitro release of dapivirine and darunavir from vaginal rings

In vitro daily and cumulative release profiles for dapivirine and darunavir from the various rings into IPA/water are presented in Figure 2. Typical of matrix-type rings, release is high on day 1 and decreases on each subsequent day (Figure 2a and b). For both drugs, in vitro release obeyed kinetics, as evidenced by linear cumulative release versus root time plots (Figure 2c and d; $R^2 > 0.994$, Table 4) and indicating a permeation-controlled drug release mechanism from a polymeric matrix device containing dispersed solid drug(s). For the dapivirine-only rings, increasing the dapivirine loading from 25 to 100 mg significantly enhanced the dapivirine release rate to further significantly enhanced the dapivirine release rate to 4201 μg/day (Table 4). This enhancement may be attributed to the darunavir-induced depression of the dapivirine melting temperature (see DSC data), which would theoretically increase dapivirine solubility in the system and its subsequent release rate, and/or the formation of permeation channels in the silicone elastomer matrix resulting from release of the higher concentration darunavir component from the ring.

Table 3. Summary data obtained from DSC thermograms (data are means ± SD; n ≥ 4)

<table>
<thead>
<tr>
<th>Dapivirine fraction</th>
<th>Peak 1</th>
<th></th>
<th>Peak 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>onset temperature (°C)</td>
<td>peak temperature (°C)</td>
<td>enthalpy (J/g)</td>
<td>onset temperature (°C)</td>
</tr>
<tr>
<td>1.00</td>
<td>101.27 ± 0.08</td>
<td>104.76 ± 0.07</td>
<td>9.98 ± 0.44</td>
<td>219.64 ± 0.07</td>
</tr>
<tr>
<td>0.90</td>
<td>99.31 ± 0.09</td>
<td>103.58 ± 0.08</td>
<td>18.99 ± 1.62</td>
<td>210.88 ± 1.02</td>
</tr>
<tr>
<td>0.80</td>
<td>97.81 ± 0.17</td>
<td>103.47 ± 0.34</td>
<td>25.71 ± 3.06</td>
<td>206.58 ± 3.05</td>
</tr>
<tr>
<td>0.70</td>
<td>97.57 ± 0.11</td>
<td>104.48 ± 0.25</td>
<td>44.88 ± 2.51</td>
<td>196.94 ± 0.82</td>
</tr>
<tr>
<td>0.60</td>
<td>96.69 ± 0.50</td>
<td>104.80 ± 0.60</td>
<td>53.20 ± 7.55</td>
<td>191.66 ± 5.66</td>
</tr>
<tr>
<td>0.50</td>
<td>95.98 ± 1.20</td>
<td>104.25 ± 0.47</td>
<td>72.47 ± 5.64</td>
<td>174.01 ± 2.31</td>
</tr>
<tr>
<td>0.40</td>
<td>100.12 ± 0.26</td>
<td>106.09 ± 0.27</td>
<td>79.42 ± 4.21</td>
<td>165.26 ± 8.12</td>
</tr>
<tr>
<td>0.30</td>
<td>96.83 ± 1.39</td>
<td>105.53 ± 1.02</td>
<td>83.86 ± 3.40</td>
<td>153.15 ± 4.90</td>
</tr>
<tr>
<td>0.20</td>
<td>101.47 ± 1.70</td>
<td>106.60 ± 0.62</td>
<td>92.10 ± 13.39</td>
<td>142.20 ± 9.48</td>
</tr>
<tr>
<td>0.10</td>
<td>99.40 ± 0.32</td>
<td>106.32 ± 0.48</td>
<td>115.70 ± 5.84</td>
<td>151.42 ± 6.73</td>
</tr>
<tr>
<td>0.00</td>
<td>99.10 ± 2.96</td>
<td>105.60 ± 0.62</td>
<td>95.26 ± 10.10</td>
<td>—</td>
</tr>
</tbody>
</table>

These values are less accurate due to limits in instrument sensitivity.
into the ring (Figure 2b and d and Table 4). Based on the DSC data presented earlier, this darunavir enhancement cannot be attributed to reduced darunavir melting temperature (since none was observed); therefore, creation of permeation channels is assumed. In summary, for the IPA/water release experiments, the addition of 300 mg darunavir to a 100 mg dapivirine ring results in a 21.2% increase in the dapivirine release rate (Figure 2c and Table 4), while the addition of 100 mg dapivirine to a 300 mg darunavir ring produces a 42.5% increase in the darunavir release rate (Figure 2d and Table 4). In vitro release of dapivirine and darunavir into SVF (Figure 3) highlights the extent to which drug solubility in the surrounding fluid controls release from a ring; both drugs are poorly water soluble, such that release into SVF is significantly less than that into IPA/water. However, it is interesting to note that dapivirine release into SVF is significantly less than that into IPA/water. Further, it is interesting to note that dapivirine release into SVF is significantly less than that into IPA/water. Darunavir concentrations decreased slightly over time (Figure 4b). Dapivirine serum concentrations were similar for the 25 mg dapivirine-only ring and the 100 mg dapivirine + 300 mg darunavir ring; darunavir serum concentrations were consistently higher for the 100 mg dapivirine + 300 mg darunavir ring compared with the 300 mg darunavir-only ring, although the differences were not always statistically significant. Dapivirine concentrations in vaginal fluid were maintained within the range $2 \times 10^2 - 2 \times 10^4$ ng/g over the study period, with concentrations consistently (but not always significantly) higher for the 100 mg dapivirine-loaded combination ring (Figure 4c). Human

Pharmacokinetic studies in cynomolgus macaques

Three different ring formulations were tested for pharmacokinetics in macaques: 25 mg dapivirine-only ring, 100 mg dapivirine + 300 mg darunavir ring, and 300 mg darunavir-only ring. The concentration versus time plots for dapivirine and darunavir in serum and vaginal fluid during the 28 day period of ring placement are presented in Figure 4. Pharmacokinetic parameters for dapivirine and darunavir in serum and vaginal fluid are summarized in Table 5. Initial serum concentrations for both ARVs were $\sim 10^4$ pg/mL, similar to plasma concentrations previously measured in women using dapivirine rings. Dapivirine serum concentrations were maintained at these levels throughout the entire period of ring use (Figure 4a), while darunavir concentrations decreased slightly over time (Figure 4b). Dapivirine serum concentrations were similar for the 25 mg dapivirine-only ring and the 100 mg dapivirine + 300 mg darunavir ring; darunavir serum concentrations were consistently higher for the 100 mg dapivirine + 300 mg darunavir ring compared with the 300 mg darunavir-only ring, although the differences were not always statistically significant. Dapivirine concentrations in vaginal fluid were maintained within the range $2 \times 10^2 - 2 \times 10^4$ ng/g over the study period, with concentrations consistently (but not always significantly) higher for the 100 mg dapivirine-loaded combination ring (Figure 4c). Human

![Figure 2. Daily in vitro release versus time (a and b) and cumulative in vitro release versus root time (c and d) profiles for dapivirine (DAP) and darunavir (DRV) into 100 mL of IPA/water mixture (1:1) over 28 days from a 25 mg DAP ring, a 300 mg DRV ring and a combination ring containing 100 mg DAP and 300 mg DRV. Each value is the mean of four replicates and error bars denote standard deviations.](http://jac.oxfordjournals.org/)

Murphy et al.
vaginal fluid concentrations for 25 mg dapivirine matrix and 25 mg dapivirine reservoir-type rings have previously been reported as ranging from 4×10^3 to 3×10^6 ng/g. These higher dapivirine concentrations are likely attributed to use of a different type of silicone elastomer system and the larger size (and therefore greater surface area for drug release) of the human-sized rings.

Table 4. Summary in vitro release data for dapivirine (DAP) and darunavir (DRV) for the various silicone elastomer ring formulations into 1:1 IPA/water mixture and SVF release media

<table>
<thead>
<tr>
<th>Ring formulation</th>
<th>Drug</th>
<th>Release medium</th>
<th>Release rate (µg/day2)</th>
<th>R^2 value</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mg DAP</td>
<td>DAP</td>
<td>IPA/water</td>
<td>1511</td>
<td>0.9998</td>
</tr>
<tr>
<td>100 mg DAP</td>
<td>DAP</td>
<td>IPA/water</td>
<td>3464</td>
<td>0.9998</td>
</tr>
<tr>
<td>100 mg DAP + 300 mg DRV</td>
<td>DAP</td>
<td>IPA/water</td>
<td>4201</td>
<td>0.9999</td>
</tr>
<tr>
<td>300 mg DRV</td>
<td>DRV</td>
<td>IPA/water</td>
<td>430.4</td>
<td>0.9942</td>
</tr>
<tr>
<td>100 mg DAP + 300 mg DRV</td>
<td>DRV</td>
<td>IPA/water</td>
<td>613.4</td>
<td>0.9988</td>
</tr>
<tr>
<td>25 mg DAP</td>
<td>DAP</td>
<td>SVF</td>
<td>196.8</td>
<td>0.9702</td>
</tr>
<tr>
<td>100 mg DAP</td>
<td>DAP</td>
<td>SVF</td>
<td>365.6</td>
<td>0.9980</td>
</tr>
<tr>
<td>100 mg DAP + 300 mg DRV</td>
<td>DAP</td>
<td>SVF</td>
<td>361.0</td>
<td>0.9979</td>
</tr>
<tr>
<td>300 mg DRV</td>
<td>DRV</td>
<td>SVF</td>
<td>197.4</td>
<td>0.9988</td>
</tr>
<tr>
<td>100 mg DAP + 300 mg DRV</td>
<td>DRV</td>
<td>SVF</td>
<td>181.1</td>
<td>0.9968</td>
</tr>
</tbody>
</table>

Release rates are the gradients obtained from linear regression analysis of the mean cumulative release versus root time plots (Figures 1c, d, 2c and d). R^2 values, representing the Pearson coefficient of determination, are also reported for the root time plots; values close to unity demonstrate matrix-type root-time release kinetics.

![Graphs](image)

Figure 3. Daily in vitro release versus time (a and b) and cumulative in vitro release versus root time (c and d) profiles for dapivirine (DAP) and darunavir (DRV) into 100 mL of SVF over 28 days from a 25 mg DAP ring, a 100 mg DAP ring, a 300 mg DRV ring and a combination ring containing 100 mg DAP and 300 mg DRV. Each value is the mean of four replicates and error bars denote standard deviations.
rings (56 mm outer diameter, 7.6 mm cross-sectional diameter). However, they might also be attributed to the different pH environments in human (pH 4.5) and macaque (pH 7) vaginas; dapivirine is a weak base ($pK_a = 5.54$ at $25^\circ C$) and therefore is present mostly in its protonated form at human vaginal pH, whereas the free base form predominates at macaque vaginal pH. Darunavir concentrations tended to decrease with time (Figure 4d), ranging from 7×10^4 ng/g at 8 h after ring placement to 9×10^3 ng/g on day 28. Maximum or near-maximum vaginal fluid and serum concentrations for dapivirine and darunavir were mostly observed at or close to the initial 8 h sampling time-point, indicating relatively rapid release of the drugs from the rings and subsequent absorption.

The range of dapivirine and darunavir concentrations measured in the various macaque tissues following necropsy on day 28 decreased according to the following rank order: vagina ($1.8 \times 10^5 - 3.8 \times 10^4$ ng/g) > cervix ($9.4 \times 10^4 - 3.9 \times 10^4$ ng/g) > uterus ($0 - 108$ ng/g) > rectum ($0 - 40$ ng/g) > axillary lymph.

Figure 4. Serum (a and b) and vaginal fluid (c and d) concentration versus time profiles for dapivirine (DAP) and darunavir (DRV) during 28 day placement in cynomolgus macaques of silicone elastomer matrix-type rings containing 25 mg DAP, 300 mg DRV and a combination of 100 mg DAP and 300 mg DRV. Each value is the mean of four replicates and error bars denote standard deviations.

Table 5. Statistical pharmacokinetic parameters for dapivirine (DAP) and darunavir (DRV) in macaque serum and vaginal fluid following placement of vaginal rings containing 25 mg DAP, 300 mg DRV and 100 mg DAP + 300 mg DRV

<table>
<thead>
<tr>
<th>Drug</th>
<th>Ring formulation</th>
<th>Vaginal fluid</th>
<th>Serum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C_{max} (ng/g)</td>
<td>T_{max} a (h)</td>
</tr>
<tr>
<td>DAP 25 mg DAP</td>
<td></td>
<td>7591 ± 2508</td>
<td>168</td>
</tr>
<tr>
<td>DAP 100 mg DAP + 300 mg DRV</td>
<td>19260 ± 5675</td>
<td>8</td>
<td>6336 ± 3999</td>
</tr>
<tr>
<td>DRV 300 mg DRV</td>
<td></td>
<td>50650 ± 12425</td>
<td>8</td>
</tr>
<tr>
<td>DRV 100 mg DAP + 300 mg DRV</td>
<td>69916 ± 11798</td>
<td>8</td>
<td>15863 ± 11401</td>
</tr>
</tbody>
</table>

aThe most common point reporting the maximum concentration.
bNo timepoint was most common; value reported is the mean of the two middle timepoints.
nodes (0–8 ng/g) > iliac lymph node (no drug levels detected; Figure 5). The greater drug concentrations measured in the vagina relative to the cervix were consistent with the observation following necropsy that rings were located in the mid-vagina; by comparison, additional studies with smaller rings (20×4.5 mm) are ongoing and clearly show the smaller ring located close to the cervix. The relatively high drug concentrations in both the vagina and cervix are important, since these tissues are implicated as the primary infection sites for sexual transmission of HIV-1. In fact, the highest concentration of HIV-infectable cells (i.e. CD4+ T lymphocytes, macrophages and Langerhans cells) in the female genital tract are found in the cervical tissue, with significantly lower numbers found in the vaginal tissue. Approximately 2-fold higher dapivirine concentrations have previously been measured in vaginal tissue biopsies sampled adjacent to the ring location compared with ectocervical tissue biopsies for two different reservoir-type rings in humans. Also, concentrations of darunavir in the vaginal and cervical tissues were generally higher for the combination ring (containing 300 mg darunavir) compared with the 300 mg darunavir-only ring, mimicking the in vitro release data into IPA/water (Figure 2d) and suggesting that incorporation of dapivirine increases the darunavir release rate.

Endogenous serum progesterone concentrations were also measured at various timepoints (Table 2) during ring placement to determine the stage of menstrual cycle for each macaque (data are presented in the Supplementary information). Generally, the follicular and luteal phases were readily identified by progesterone serum levels of 1 and 2–15 ng/mL, respectively (Figure S1 and Figure S2, both available as Supplementary data at JAC Online). There was no obvious correlation between the stage of menstrual cycle and drug concentrations in vaginal fluid (Figure S1 and Figure S2) or serum (data not shown). Exogenous progestin administration, in the form of subcutaneously administered medroxyprogesterone acetate (Depo-Provera), has previously been shown to significantly influence the pharmacokinetics of antiretroviral-releasing vaginal rings in macaques.

Ex vivo activity of dapivirine and darunavir against HIV challenge

IC50 values calculated against HIV-1 BaL from samples taken at each timepoint are displayed in Figure 6 for all of the rings.
Mean IC$_{50}$ values for dapivirine from the 25 mg dapivirine ring ranged from 0.09 to 0.14 ng/mL (two samples excluded because of ambiguous values). On average, dapivirine concentrations in vaginal fluid were >15,000-fold greater than the calculated IC$_{50}$ value (ng/mL) during the 28 day study period. However, because of the relatively small pre-dilution step (1:3), solvent effects on the dose–response curve cannot be excluded and hence the calculated IC$_{50}$ value should be viewed with caution. Several of the samples from the 300 mg darunavir ring study provided ambiguous IC$_{50}$ values or failed to provide an appropriate dose–response curve. Mean IC$_{50}$ values calculated on samples taken at 8 h and 7 days ranged from 1.36 to 1.86 ng/mL. Over this time period the darunavir concentration in vaginal fluid was >17,000-fold the calculated IC$_{50}$ value. However, the data from samples taken outside this time frame did not allow for robust IC$_{50}$ value determination. Mean IC$_{50}$ values calculated for the combination ring ranged from 0.28 to 1.31 ng/mL. On average, the dapivirine and darunavir concentrations in vaginal fluid (ng/g) were >20,000-fold the determined IC$_{50}$ values over the 28 day study period. Note that the IC$_{50}$ calculated for the combination dapivirine + darunavir ring reflects the combined compound concentration of dapivirine and darunavir within the extracted vaginal fluid sample.

In general, the data support the activity of both drugs when present in vaginal fluid at sufficient concentration. However, the methodology required to effectively extract and process these highly hydrophobic drugs, and dapivirine in particular, reduces the accuracy of these measurements owing to the presence of residual organic solvent in the test sample. Further work is required to develop a method that would allow for compound testing in the in situ vaginal fluid, particularly for highly hydrophobic compounds with relatively poor aqueous solubility like many experimental NNRTIs.

Residual dapivirine and darunavir in vaginal rings

The quantities of dapivirine and darunavir released from the rings during in vitro release testing and pharmacokinetic testing in macaques were calculated according to the equation $Q = L - R$, where Q is the quantity of drug released, L is the initial drug loading and R is the residual drug content. L was determined for a sample ($n=4$) of rings immediately after manufacture using the previously described solvent extraction method, and the value was assumed to apply to all other rings within the same batch. R was also determined using the solvent extraction method for rings ($n=4$ per set) following completion of in vitro release and pharmacokinetic testing. Given that L values could not be determined for the rings that underwent testing (due to the destructive nature of the content determination method), the Q values reported in Table 6 are considered approximate. For both antiretroviral drugs, in vitro release into IPA/water was significantly greater than into SVF, reflecting the poor aqueous solubility of dapivirine and darunavir. In the macaque pharmacokinetic studies, the quantity of dapivirine administered was greater for the

![Figure 6. IC$_{50}$ (HIV-1 BaL) values determined from macaque vaginal fluid samples for (a) 25 mg dapivirine ring, (b) 300 mg darunavir ring and (c) 100 mg dapivirine + 300 mg darunavir ring. x-axis labels refer to individual macaque code.](http://jac.oxfordjournals.org/)

| Table 6. Quantity of dapivirine (DAP) and darunavir (DRV) released from vaginal rings during in vitro release testing and in vivo pharmacokinetic (PK) studies in macaques |
|---|---|---|---|
| **Ring formulation** | **in vitro release testing** | **PK study** | **in vitro release testing** |
| | IPA/water | SVF | | IPA/water | SVF | PK study |
| 25 mg DAP | 7.89 ± 0.04 | 0.88 ± 0.01 | 0.66 ± 0.39 | 3.19 ± 0.16 | 0.86 ± 0.13 | 27.41 ± 4.82 |
| 100 mg DAP + 300 mg DRV | 21.48 ± 0.07 | 1.70 ± 0.01 | 12.62 ± 1.68 | 2.14 ± 0.06 | 0.96 ± 0.19 | 36.04 ± 6.56 |
| 300 mg DRV | — | — | — | — | — | — |

In vitro release testing values are presented as the mean cumulative release (±SD) of rings ($n=4$) into IPA/water and SVF. PK study values represent mean amounts of drug released ($n=4$; ±SD). These values were calculated from residual content values determined using solvent extraction subtracted from a mean batch content determination conducted on rings manufactured in the same batch. The standard deviation is that of the four determined residual content values and does not consider the variation in initial content of the manufactured rings. All values are quoted in mg.
higher-loaded combination ring (12.62 ± 1.68 mg) compared with the 25 mg dapivirine-only ring (0.66 ± 0.39 mg), while the quantity of darunavir administered was not significantly different between the 300 mg darunavir and 100 mg dapivirine + 300 mg darunavir rings.

Given that a 25 mg dapivirine-only silicone elastomer vaginal ring is currently being tested in Phase III human clinical studies, and based on the supposition that combination antiretroviral microbicides targeting different stages of the HIV-1 replication cycle are likely to provide increased breadth and degree of protection against vaginal HIV transmission compared with single active molecules, we conclude that the results of this study strongly support progress of a combination dapivirine + darunavir silicone elastomer vaginal ring into early stage clinical studies. The potential of protease inhibitors as vaginal microbicides, either alone or in combination, also warrants further investigation.

Acknowledgements
We acknowledge the International Partnership for Microbicides (IPM) for supply of dapivirine, Janssen for supply of darunavir and Jeremy Nuttall (IPM) for commentary on the pharmacokinetic data. We also acknowledge the staff of the Division of Immuno-Virology/IDMIT infrastructure and Dr Christophe Joubert for veterinary assistance.

Funding
This work was funded by the European Commission (EU FP7 CHAARM 242135).

Transparency declarations
O. L., L. V., M. F. and J. V. R. are employees of Janssen Diagnostics (a Johnson & Johnson Company). O. L. and J. V. R. own stocks in Johnson & Johnson. The remaining authors have none to declare.

Supplementary data
Figure S1 and Figure S2 are available as Supplementary data at JAC Online (http://jac.oxfordjournals.org/).

References
7 Malcolm RK, Fetherston SM. Delivering on MPTs: addressing the needs, rising to the challenges and making the opportunities. Contraception 2013; 88: 321–5.
26 Fetherston SM, Geer L, Veayze RS et al. Partial protection against multiple RT-SHIV162P3 vaginal challenge of rhesus macaques by a

