The perihelion activity of comet 67P/Churyumov-Gerasimenko as seen by robotic telescopes

Published in:
Monthly Notices of the Royal Astronomical Society

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Publisher PDF may be used: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. ©: 2016 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date: 12. Jan. 2019
The perihelion activity of comet 67P/Churyumov–Gerasimenko as seen by robotic telescopes

Colin Snodgrass,1,* Cyrielle Opitom,2 Miguel de Val-Borro,3,4 Emmanuel Jehin,2 Jean Manfroid,2 Tim Lister,5 Jon Marchant,6 Geraint H. Jones,7,8 Alan Fitzsimmons,9 Iain A. Steele,6 Robert J. Smith,6 Helen Jermak,6,10 Thomas Granzer,11 Karen J. Meech,12 Philippe Rousselot13 and Anny-Chantal Levasseur-Regourd14

1School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
2Institut d’Astrophysique et de Géophysique, Université de Liège, allée du 6 Août 17, B-4000 Liège, Belgium
3Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
4NASA Goddard Space Flight Center, Astrochemistry Laboratory, Code 691.0, Greenbelt, MD 20771, USA
5Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive Ste. 102, Goleta, CA 93117, USA
6Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF, UK
7The Centre for Planetary Sciences at UCL/Birkbeck, Gower Street, London WC1E 6BT, UK
8Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, BT7 1NN, UK
9Physics Department, Lancaster University, Lancaster LA1 4YB, UK
10Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
11Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
12University of Franche-Comté, Observatoire des Sciences de l’Univers THETA, Institut UTINAM – UMR CNRS 6213, BP 1615, F-25010 Besançon Cedex, France
13LATMOS-IPSL; UPMC (Sorbonne Univ.), BC 102, 4 place Jussieu, F-75005 Paris, France

Accepted 2016 September 9. Received 2016 September 3; in original form 2016 July 10

ABSTRACT
Around the time of its perihelion passage, the observability of 67P/Churyumov–Gerasimenko from Earth was limited to very short windows each morning from any given site, due to the low solar elongation of the comet. The peak in the comet’s activity was therefore difficult to observe with conventionally scheduled telescopes, but was possible where service/queue-scheduled mode was possible, and with robotic telescopes. We describe the robotic observations that allowed us to measure the total activity of the comet around perihelion, via photometry (dust) and spectroscopy (gas), and compare these results with the measurements at this time by Rosetta’s instruments. The peak of activity occurred approximately two weeks after perihelion. The total brightness (dust) largely followed the predictions from Snodgrass et al. (2013), based on observations from previous orbits, and observations in the pre-landing phase of the mission showed the comet to be following these predictions (Snodgrass et al. 2016). This implies that there is little change from orbit to orbit in 67P, and that results from Rosetta can be more generally applied. A simple thermophysical model (balancing the sublimation needed to produce the observed dust coma with the input solar irradiance – e.g. Meech & Švoren 2004) was able to describe most observations presented by Snodgrass et al. (2013), but underestimated the peak brightness relative to the data in the region around the perihelion passage. The peak in activity was also an important opportunity to measure the total gas production of the comet, after deep searches with large aperture telescopes. The total dust activity of the comet were made by Snodgrass et al. (2013), based on observations from previous orbits, and observations in the pre-landing phase of the mission showed the comet to be following these predictions (Snodgrass et al. 2016). This implies that there is little change from orbit to orbit in 67P, and that results from Rosetta can be more generally applied. A simple thermophysical model (balancing the sublimation needed to produce the observed dust coma with the input solar irradiance – e.g. Meech & Švoren 2004) was able to describe most observations presented by Snodgrass et al. (2013), but underestimated the peak brightness relative to the data in the region around the perihelion passage. The peak in activity was also an important opportunity to measure the total gas production of the comet, after deep searches with large aperture telescopes.

Key words: comets: individual: 67P/Churyumov–Gerasimenko.

1 INTRODUCTION
A large world-wide campaign of ground-based observations supported the European Space Agency’s unique Rosetta mission, the first spacecraft to orbit a comet, which followed 67P/Churyumov–Gerasimenko (hereafter 67P) from 2014 to 2016 as it passed through perihelion. The campaign had the dual purpose of providing large-scale context for Rosetta, by measuring total production rates and observing the coma and tails beyond the spacecraft’s orbit, and allowing comparison between 67P and other comets. Predictions for

* E-mail: colin.snodgrass@open.ac.uk
telescopes could only produce upper limits to emissions in the 2014 observing window (Snodgrass et al. 2016). Good coverage of the perihelion passage was therefore a priority for the ground-based observation campaign, despite the challenging observing geometry. 67P was in southern skies during the 2014 observing window (February–November), and slowly brightened as it approached the Sun from ~4–3 au, but still required large aperture telescopes to observe. After a gap in coverage enforced by low solar elongation between 2014 December and 2015 April, the comet was briefly observable from the Southern hemisphere before reaching declination of +24° around the time of its perihelion passage (2015 August). Throughout the perihelion period, the phase angle was around 30°, and the solar elongation varied from 30° to 90°, with the comet observable only in morning twilight for the majority of the time. At this time, smaller aperture robotic telescopes were better able to follow the comet than the larger facilities used in 2014.

In this paper, we describe observations taken as part of an International Time Programme (ITP) using Canary Island telescopes, the 2-m Liverpool Telescope (LT) on La Palma and the 1.2-m STELLar Activity (STELLA) imaging telescope on Tenerife, and with the specialist comet observing 0.6-m TRAnsiting Planets and Planetary imals Small Telescope (TRAPPIST), at La Silla in Chile, and the robotic telescopes operated by Las Cumbres Observatory Global Telescope Network (LCOGT). Observations in the months around perihelion (2015 August 13) are included in the current work, corresponding to the period when the peak in activity was observed, while the comet was at heliocentric distances 1.2 < r < 2 au. This section describes the observations from each telescope, while Section 3 reports the total activity measurements derived. We discuss the implications of these results, and compare them with earlier observations and Rosetta measurements, in Section 4.

2 OBSERVATIONS
We summarize the observations around perihelion in Table 1, and describe them in more detail in the following sub-sections.

2.1 TRAPPIST
TRAPPIST is a 60-cm robotic telescope installed in 2010 at La Silla observatory (Jehin et al. 2011). The telescope is equipped with a 2K × 2K thermoelectrically cooled Finger Lakes Instrumentation Proline CCD camera with a field of view of 22 arcmin × 22 arcmin. We binned the pixels 2 × 2 and obtained a resulting plate scale of 1.3 arcsec pixel−1. The telescope is equipped with a set of narrow-band filters designed for the observing campaign of comet Hale–Bopp (Farnham, Schleicher & A’Hearn 2000) isolating the emission of OH, NH, CN, C3, C2 and emission-free continuum regions at four wavelengths. A set of broad-band B, V, Rc and Ic Johnson–Cousin filters is also mounted on the telescope. We observed the comet once or twice a week from 2015 April 18 to the end of the year, with broad-band filters. Exposure times ranged from 120 to 240 s.

Table 1. Log of observations described in this paper, together with heliocentric and geocentric distances (r and Δ, au) and solar phase angle (α, degrees). Dates are all 2015, format MM-DD.dd. TRAPPIST data. Full table is available online, first five rows given as an example.

<table>
<thead>
<tr>
<th>UT date</th>
<th>Tel./inst.</th>
<th>N × texp filter</th>
<th>r (au)</th>
<th>Δ (au)</th>
<th>α (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-18.41</td>
<td>TRAPPIST</td>
<td>2 × 240 s Rc</td>
<td>1.83</td>
<td>2.64</td>
<td>15.6</td>
</tr>
<tr>
<td>04-25.42</td>
<td>TRAPPIST</td>
<td>3 × 180 s Rc</td>
<td>1.78</td>
<td>2.56</td>
<td>17.2</td>
</tr>
<tr>
<td>04-29.42</td>
<td>TRAPPIST</td>
<td>2 × 180 s Rc</td>
<td>1.75</td>
<td>2.51</td>
<td>18.1</td>
</tr>
<tr>
<td>05-04.42</td>
<td>TRAPPIST</td>
<td>1 × 180 s Rc</td>
<td>1.71</td>
<td>2.45</td>
<td>19.2</td>
</tr>
<tr>
<td>05-05.42</td>
<td>TRAPPIST</td>
<td>3 × 180 s Rc</td>
<td>1.71</td>
<td>2.44</td>
<td>19.5</td>
</tr>
</tbody>
</table>

Table 2. CN production of 67P perihelion. 2015 (au) (au) molec. s⁻¹

<table>
<thead>
<tr>
<th>UT date</th>
<th>Tel./inst.</th>
<th>r (au)</th>
<th>Δ (au)</th>
<th>Q(CN) molec. s⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-22.43</td>
<td>TRAPPIST</td>
<td>1.25</td>
<td>1.77</td>
<td>6.72 ± 0.64 × 10²⁴</td>
</tr>
<tr>
<td>08-24.42</td>
<td>TRAPPIST</td>
<td>1.25</td>
<td>1.77</td>
<td>7.77 ± 0.82 × 10²⁴</td>
</tr>
<tr>
<td>08-29.42</td>
<td>TRAPPIST</td>
<td>1.26</td>
<td>1.77</td>
<td>1.00 ± 0.10 × 10²⁵</td>
</tr>
<tr>
<td>09-11.41</td>
<td>TRAPPIST</td>
<td>1.29</td>
<td>1.78</td>
<td>8.45 ± 0.93 × 10²⁴</td>
</tr>
<tr>
<td>09-12.41</td>
<td>TRAPPIST</td>
<td>1.30</td>
<td>1.78</td>
<td>7.49 ± 0.91 × 10²⁴</td>
</tr>
<tr>
<td>09-05.24</td>
<td>LT/LOTUS</td>
<td>1.28</td>
<td>1.77</td>
<td>8.74 ± 0.70 × 10²⁴</td>
</tr>
<tr>
<td>09-10.24</td>
<td>LT/LOTUS</td>
<td>1.29</td>
<td>1.78</td>
<td>8.93 ± 0.74 × 10²⁴</td>
</tr>
<tr>
<td>09-15.23</td>
<td>LT/LOTUS</td>
<td>1.31</td>
<td>1.78</td>
<td>7.62 ± 0.78 × 10²⁴</td>
</tr>
<tr>
<td>09-30.24</td>
<td>LT/LOTUS</td>
<td>1.37</td>
<td>1.80</td>
<td>5.47 ± 0.82 × 10²⁴</td>
</tr>
<tr>
<td>10-07.23</td>
<td>LT/LOTUS</td>
<td>1.41</td>
<td>1.80</td>
<td>2.83 ± 0.86 × 10²⁴</td>
</tr>
<tr>
<td>10-13.24</td>
<td>LT/LOTUS</td>
<td>1.45</td>
<td>1.81</td>
<td>3.23 ± 0.90 × 10²⁴</td>
</tr>
<tr>
<td>10-26.22</td>
<td>LT/LOTUS</td>
<td>1.53</td>
<td>1.81</td>
<td>2.06 ± 0.94 × 10²⁴</td>
</tr>
<tr>
<td>11-03.25</td>
<td>LT/LOTUS</td>
<td>1.58</td>
<td>1.80</td>
<td>1.14 ± 0.98 × 10²⁴</td>
</tr>
<tr>
<td>11-08.23</td>
<td>LT/LOTUS</td>
<td>1.62</td>
<td>1.80</td>
<td>2.37 ± 1.02 × 10²⁴</td>
</tr>
<tr>
<td>11-10.24</td>
<td>LT/LOTUS</td>
<td>1.63</td>
<td>1.79</td>
<td>9.44 ± 0.96 × 10²³</td>
</tr>
<tr>
<td>11-12.21</td>
<td>LT/LOTUS</td>
<td>1.64</td>
<td>1.79</td>
<td>5.90 ± 5.10 × 10²³</td>
</tr>
<tr>
<td>11-14.26</td>
<td>LT/LOTUS</td>
<td>1.66</td>
<td>1.79</td>
<td>9.82 ± 9.14 × 10²³</td>
</tr>
<tr>
<td>12-03.22</td>
<td>LT/LOTUS</td>
<td>1.80</td>
<td>1.74</td>
<td>3.42 ± 3.18 × 10²³</td>
</tr>
<tr>
<td>12-10.28</td>
<td>LT/LOTUS</td>
<td>1.85</td>
<td>1.72</td>
<td>1.40 ± 1.22 × 10²⁴</td>
</tr>
</tbody>
</table>

2.2 Liverpool telescope
The 2-m LT was one of the first fully robotic professional telescopes, and has been in operation at Roque de los Muchachos Observatory on La Palma since 2003. It was built and is operated by Liverpool John Moores University, and is equipped with an array of instruments (imagers, spectrographs and polarimeters) that can
be quickly switched between during the night (Steele et al. 2004). As one of the larger telescopes that could regularly observe 67P around perihelion, we proposed to use it primarily for spectroscopy, to study the dust colours (continuum slope) and gas emission bands. As the existing long-slit spectrograph, SPectrograph for the Rapid Acquisition of Transients (Piascik et al. 2014), covers red wavelengths where cometary gasses have only weaker emissions, the LT team proposed the creation of a new low-resolution (R ~ 330) blue/ultraviolet (UV) (320–630 nm) sensitive spectrograph for the 67P monitoring programme. The rapid design, construction and commissioning of this instrument, the LOW-cost Ultraviolet Spectrograph (LOTUS), enabled us to observe the stronger CN band at 388 nm (Steele et al. 2016).

Observations of 67P using LOTUS began on 2015 September 5 and continued until the comet had faded too far for UV spectroscopy with the LT. LOTUS was designed with a two-width slit, the longer and narrower part slit of 2.5 arcsec × 95 arcsec being optimized for comet observations, while the wider 5 arcsec × 25 arcsec slit allowed observations of spectrophotometric standard stars to measure the instrument response. The CCD pixels were binned 4 × 4 to obtain a spatial pixel scale of 0.6 arcsec pixel⁻¹.

LOTUS spectroscopic data were reduced with the routine pipeline to produce science frames. This pipeline is based on the Fibre-fed RObotic Dual-beam Optical Spectrograph (FRODOSpec) reduction pipeline (Barnsley, Smith & Steele 2012) and is similar to that of other long-slit instruments. First, the bias and dark frames were subtracted and the wavelength calibration carried out. The pipeline automatically aligns the dispersion direction in the two-dimensional frames with rows of the array to produce wavelength calibrated spectra. Three 300-s comet spectra obtained for each epoch were median combined and extracted by summing the flux over an aperture along the slit. Several frames with clean sky background were observed at the same airmass to perform the sky subtraction for each combined frame. Finally, the spectra of the comet were corrected for atmospheric extinction and flux calibrated with observations of standard star using standard flatfield techniques. The continuum in the comet spectra caused by sunlight reflection off the dust was removed using the spectrum of the solar analogue HD 29641 that was observed in the beginning of the observing period.

From the LOTUS observations, we derived CN production rates using a Haisch spherically symmetric model (Haisch 1957) that is also used for the analysis of the TRAPPIST photometric data described in Section 2.1. We included the photoproduction and dissociation of molecules in the coma with parent and daughter scalelengths and fluorescence efficiencies taken from Schleicher (2010). With this model, the column density in a circular area of the observed species is proportional to the measured flux of the emission band, from which the production rate can be derived directly.

There were also images of the comet collected with the LT, using its IO:O camera (Steele et al. 2014). These include the acquisition images taken to robotically acquire the comet on to the slit of LOTUS, and some additional deeper images. Images were mostly taken in the SDSS-r filter, with additional sets in griz taken to measure the colour of the coma in the weeks closest to perihelion. All images taken with the LT were processed using the IO:O pipeline, which performs bias subtraction, flat-fielding and photometric calibration.

2.3 STELLA

The STELLA telescopes are a pair of 1.2-m telescopes at the Teide observatory on the island of Tenerife, built and operated by the Leibniz-Institut für Astrophysik Potsdam (AIP) in collaboration with the Instituto de Astrofísica de Canarias (IAC). The pair of telescopes have complementary instrumentation—a wide-field imager on one telescope and high-resolution spectrograph on the other—and were built with monitoring of stellar activity in cool stars in mind. Further details on the telescopes can be found in the papers by Strassmeier et al. (2010, 2004).

We used the imaging telescope to perform imaging in an SDSS-r filter on every possible night, and attempted griz filter observations every 10 nights. The instrument, the Wide Field STELLA Imaging Photometer, has a 22 arcmin field of view and 0.32 arcsec pixel⁻¹ pixel scale, using a single 4K CCD. The STELLA telescope telescope control system does not allow tracking of moving (Solar system) objects, and expects a fixed RA and Dec. for each target. Observing blocks (OBs) are created and submitted to the queue using a java tool. In order to interact with this system, creation of the OBs was scripted to produce one block per night with appropriate start and end time constraints, the correct position and a short enough exposure time that the comet would not move more than 0.5 arcsec during the exposure (and therefore stay within the seeing disc). The number of exposures was scaled to have an approximately fixed OB length (10 min in the near-perihelion period). These OBs were then automatically inserted into the telescope queue.

Data were taken robotically and automatically reduced using the STELLA pipeline, which also determines individual frame zero-points by matching field stars with the PPMXL catalogue (Roexer, Demleitner & Schilbach 2010). This is based on USNO-B1.0 and 2MASS catalogues; transformations from Bilir et al. (2008) and Jester et al. (2005) are used to give zero-points in the SDSS-like filters. The resulting absolute calibration is internally consistent, as can be seen by the smooth night-to-night variation, and gives a good match in the r band to other total brightness values from other telescopes, but the filter-to-filter zero-points are not well calibrated, and therefore further calibration is required to measure the colour of the comet using the STELLA data.

The resulting frames for each night were shifted and stacked, based on the predicted motion of the comet, to produce one median image per filter and night. These were inspected visually to confirm that the comet was detected, and remove any nights where the comet fell on top of a star or there were issues with the data quality. There were occasionally problems with the telescope focus, which is automatic but did not always perform well at the low elevation the telescope needed to point to for observations of 67P. Badly defocussed images were rejected. The total comet brightness was then measured within various apertures—here we report the brightness within ρ = 10 000 km at the distance of the comet.

2.4 LCOGT

LCOGT is a global network of robotic telescopes designed for the study of time-domain phenomena on a variety of time-scales. The LCOGT network incorporates the two 2-m Faulkes Telescopes (very similar to the LT described in Section 2.2) and nine 1-m telescopes deployed at a total of five locations around the world, and have been operating as a combined network since 2014 May. The LCOGT network is described in more detail in Brown et al. (2013) and the operation of the network is described in Boroson et al. (2014).

Due to the visibility of 67P, we started observations on 2015 August 7 with the 2-m Faulkes Telescope North on Haleakala, Maui, Hawaii using the fs02 instrument. This instrument is a Spectral Instruments 600 camera using a Fairchild 4096 × 4096 pixel CCD486.
CCD that was operated in bin 2 × 2 mode to give a pixel scale of 0.3 arcsec pixel$^{-1}$ and a field of view of 10 arcmin × 10 arcmin. Observations were primarily conducted in SDSS-g' and SDSS-r' but a series of $g'r'i'z'$ observations were taken on seven nights between 2015 September 3 and 2015 September 21.

Observations with the 1-m network started on 2015 December 8 and continued through until 2016 March 26 – in this paper, we describe data taken up to the end of 2015 December. Observations were obtained from the LCOGT sites at McDonald Observatory (Texas; one telescope), Cerro Tololo (Chile; three telescopes), Sutherland (South Africa; two telescopes) and Siding Spring Observatory (Australia; one telescope) and were all obtained in SDSS-r'. Two different instrument types were used; the first one uses a SBIG STX-16803 camera with a Kodak KAF-16803 CCD with 4096 × 4096 9 µm pixels that was operated in bin 2 × 2 mode to give a pixel scale of 0.464 arcsec pixel$^{-1}$ and a field of view of 15.8 arcmin × 15.8 arcmin. The other instrument type was the LCOGT-manufactured Sinistro camera using a Fairchild 4096 × 4096 pixel CCD486 CCD that was operated in bin 1 × 1 mode to give a pixel scale of 0.387 arcsec pixel$^{-1}$ and a field of view of 26.4 arcmin × 26.4 arcmin.

All data were reduced with the LCOGT Pipeline based on ORAC-DR (Jenness & Economou 2015 and also described in more detail in Brown et al. 2013) to perform the bad-pixel masking, bias and dark subtraction, flat-fielding, astrometric solution and source catalogue extraction. In order to produce a more consistent result and to allow the use of photometric apertures that are a fixed size at the distance of the comet (and therefore of variable size on the CCD), we elected to resolve the astrometric and photometric (zero-point determination) solution for all the data using a custom pipeline that operated on the results of the LCOGT Pipeline.

This comet-specific pipeline makes use of SExtractor (Bertin & Arnouts 1996) and SCAMP (Bertin 2006) to produce a source catalogue and solve for the astrometric transformation from pixel co-ordinates to RA, Dec. The UCAC4 catalogue (Zacharias et al. 2013) was used by SCAMP to determine the astrometric solution and also by the pipeline to determine the zero-point between the instrumental magnitudes and the magnitude for cross-matched sources in the UCAC4 catalogue. Outlier rejection was used to eliminate those cross-matches with errant magnitudes (in either the CCD frame or the UCAC4 catalogue) and this process was repeated until no more cross-matches were rejected. In a small number of cases, readout/shutter problems with the SBIG cameras caused part of the image to receive no light and the zero-point determination failed in these cases. The frames were excluded from the analysis.

The comet magnitudes were then measured through photometric aperture centred on the predicted position and with a radius corresponding to 10 000 km at the time of observation, taking into account the appropriate pixel scale of the instrument used and the Earth–comet distance. The predicted position and distance were interpolated for the mid-point of the observation in empheris output, produced by the JPL HORIZONS system (Giorgini 2015).

3 Activity Measurements

3.1 Total Brightness

Fig. 1 recreates the predicted apparent brightness of the comet from Snodgrass et al. (2013) (their fig. 10), with photometry from 2014 (Snodgrass et al. 2016) and this work overlaid. It can be seen that the total brightness of the comet, as measured in the R band within a $\rho = 10$ 000 km radius aperture, is in very good agreement with predictions throughout the current apparition. In this figure, and all subsequent ones, we have converted SDSS r' filter photometry to R band for ease of comparison with previous VLT FORS photometry and the Snodgrass et al. (2013) predictions. We use the conversion from Lupton,\(^1\) $R = r - 0.1837(g - r) - 0.0971$, together with the $(g - r) = 0.62 \pm 0.04$ colour of the comet measured with the LT (see Section 3.2 below). We show a zoom in on the 2015 data $(r < 2$ au) in Fig. 2, which shows a number of features. First, the good agreement between the photometry with different telescopes and filters following the conversion to R band is clear. Secondly, there is an obvious offset in the peak brightness post-perihelion, and a strong asymmetry – the apparent magnitude of the comet is brighter at the same distances post-perihelion than pre-perihelion. Finally, it is also apparent that the photometry pre-perihelion is consistently fainter than the predicted curve, although it follows the same trend. Following the method used in Snodgrass et al. (2016),

\(^1\) http://cas.sdss.org/dr6/en/help/docs/algorith.asp?key=sdss2UBVRI

Figure 1. Prediction versus measurements of total R-band magnitude within $\rho = 10$ 000 km. Hatched, cross-hatched and solid shading show periods when the solar elongation is less than 50°, 30° and 15°, respectively. The vertical dashed line marks perihelion.

Figure 2. Same as Fig. 1, showing zoom in on 2015 period around perihelion. Here the solar elongation is shown by shading at the bottom of the plot only, for ease of seeing data points.
we find that this implies a drop in total activity in this period of 37 ± 9 per cent relative to previous orbits, but we caution that the empirical prediction is only meant to be approximate. The step in the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature. The very good match to the prediction curve between pre- and post-perihelion models, for example, is not a real feature.
Figure 5. Sky-subtracted spectra of comet 67P obtained on September 5 with LOTUS. The spectra are extracted at three different apertures centred on the comet nucleus with diameters 8.4 (blue line), 16.8 (green line) and 33.6 arcsec (red line).

Figure 6. Post-perihelion CN production rates in comet 67P as a function of heliocentric distance with 1σ uncertainties. Red symbols are measurements by LOTUS, blue from TRAPPIST, and green are points from previous orbits from Schleicher (2006).

different from the steep decrease in total brightness from the dust photometry described above.

4 DISCUSSION

If we compare the photometry with predictions from a simple thermophysical model (Meech & Svoren 2004) we find a reasonable agreement (Fig. 7), but there are differences. In this case, we plot the photometry measured within a fixed radius aperture (ρ = 5 arcsec) for comparison with the model output, which already includes corrections for changing observation geometry. The match is good close to perihelion, although this model predicts that there should have been more dust lifted by the gas pre-perihelion. It is interesting to compare this with the fits to previous apparitions (Snodgrass et al. 2013, fig. 9), where this model gave a very good fit to all data apart from the few points closest to perihelion. The model required an active surface area of 1.4 per cent (of the area of a spherical nucleus), and previously needed an enhancement (to 4 per cent) to match the near perihelion points, while this apparition shows a smoothly varying total brightness through perihelion. As the coverage of the perihelion period is much more dense in our data set than for previous apparitions, this could be used to improve the outgassing model – it is worth repeating that the model shown in Fig. 7 is simply an extrapolation of the earlier fit, and has not been adjusted to try to fit the data set plotted here.

Fig. 6 indicates that although there is some scatter in the measured CN production rates, Q(CN) was systematically lower in 2015 than during the 1982/1983 and 1995/1996 post-perihelion apparitions, as measured via narrow-band photometry by Schleicher (2006). It is important to note that the TRAPPIST photometry just after perihelion agrees with the LOTUS spectroscopy. Therefore, this appears to be a real change and not caused by any differences between analysing narrow-band aperture photometry and long-slit spectroscopy. However, with these data alone we cannot associate this with a secular decrease in outgassing rate.

It appears that the CN production rate follows a different pattern than the total dust production, both in terms of similarity to previous orbits and the symmetry around the peak – a longer term view, including observations pre-perihelion and at larger distance post-perihelion with larger aperture telescopes (VLT/FORS), will allow this to be investigated in more detail (Opitom et al in preparation). The period covered by our TRAPPIST and LOTUS observations corresponds to the time when the total brightness matches the model from gas production (Fig. 7), even though they suggest lower total CN production at this time. CN production was even lower pre-perihelion (Opitom et al., in preparation), suggesting that the lower-than-predicted brightness there could be related to lower gas production in this period, but CN is a minor component of the coma; total water production measurements from a variety of Rosetta instruments show a more symmetrical pattern that resembles the total dust production seen in Fig. 4 (Hansen et al. 2016). Instead, the difference in total CN production may be related to different seasonal illumination of the nucleus.
Although there is some indication that the gas production rate is variable from orbit to orbit, the total dust production remains very stable. Further remote observations also support the idea that the activity of the comet is quite stable, in particular as the structure of the coma. Observations from the Wendelstein Observatory in Germany show the same large-scale structures (jets) as were seen in previous orbits (Vincent et al. 2013; Boehnhardt et al. 2016), indicating that the global activity pattern is similar, and the pole position has not significantly changed. Higher resolution polarimetric imaging with the Hubble Space Telescope also reveals the same jet structures (Hadamcik et al. 2016).

The robotic telescopes provided a very dense monitoring of the comet activity around perihelion, and therefore gave the best chance to detect small outbursts. We do not see any convincing evidence for outbursts in this data set, and we did not detect in our r-band photometry any of the many small ‘outbursts’ detected by Rosetta (Vincent et al. 2016). This underlines the fact that ground-based photometry naturally ‘smears out’ the underlying short-time-scale activity of the nucleus, due to the photometric apertures containing both the outflowing dust coma generated from the entire nucleus over several hours or days, plus any underlying slow moving gravitationally bound dust particles. Given the previous spacecraft detections of multiple small outbursts, i.e. A’Hearn et al. (2005), it is possible that the majority of comets undergo continuous small outbursts that fail to be detected even with systematic monitoring as described in this paper.

5 CONCLUSIONS

We present photometry and spectroscopy of 67P around its 2015 perihelion passage, acquired with robotic telescopes. These telescopes (the 2-m LT, 1.2-m STELLA, 0.6-m TRAPPIST and 1-m and 2-m telescopes in the LCOGT network) were able to perform very regular observation despite the challenging observing geometry (low solar elongation). We find the following.

(i) The total brightness of the comet varies smoothly through perihelion, with a peak \sim 2 weeks after closest approach to the Sun.
(ii) The R-band brightness largely follows the prediction from Snodgrass et al. (2013), indicating that the dust activity level does not change significantly from orbit to orbit.
(iii) The dust brightness variation is quite symmetrical around its peak, and drops off fairly quickly post-perihelion.
(iv) The gas production (measured in CN) drops off smoothly and slowly post-perihelion.
(v) There is evidence of a decrease in the production rate of CN between the 1980s/1990s and the current apparition, although this needs to be confirmed with observations over a longer period with large telescopes.

ACKNOWLEDGEMENTS

This work was based, in part, on observations conducted at Canary Island telescopes under CCI ITP programme 2015/06, including use of the Liverpool and STELLA telescopes. The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias with financial support from the UK Science and Technology Facilities Council (STFC). The STELLA robotic telescopes in Tenerife are an AIP facility jointly operated by AIP and IAC. TRAPPIST is a project funded by the Belgian Fund for Scientific Research (Fonds National de la Recherche Scientifique, FR-INSFNS) under grant FRFC 2.5.594.09.F, with the participation of the Swiss National Science Foundation (SNF). CS was supported by an STFC Rutherford fellowship. CO acknowledges the support of the FNRS. EJ is an FRS Research Associate and JM is the Research Director of the FNRS. AF acknowledges support from STFC grant ST/L000709/1. KM acknowledges support from NSF grant AST1413736. ACLR acknowledges partial support from CNES.

REFERENCES

A’Hearn M. F. et al., 2005, Science, 310, 258
Brown T. M. et al., 2013, PASP, 125, 1031
Capaccioli F. et al., 2015, Science, 347, 628
Farnham T. L., Schleicher D. G., A’Hearn M. F., 2000, Icarus, 147, 180
Jehin E. et al., 2011, The Messenger, 145, 2
APPENDIX A: PHOTOMETRY

This appendix gives all R-band photometry from the robotic telescopes mentioned in this paper. All values are based on an aperture with radius $\rho = 10,000$ km at the distance of the comet. Where the telescopes used an SDSS-r filter, a colour correction of -0.2105 has been applied. Heliocentric distance (r) and time from perihelion (ΔT) are given, together with the apparent magnitude as well as the magnitude corrected to unit geocentric distance and zero phase angle, using $\beta = 0.02$ mag deg$^{-1}$. The $A\rho$ quantity is given in cm, without any correction for phase angle in this case.

Table A1. R-band photometry. Measured within an aperture with radius ρ 10,000 km. Full table is available online, first five rows given as an example.

<table>
<thead>
<tr>
<th>UT date</th>
<th>r (au)</th>
<th>ΔT (d)</th>
<th>Mag</th>
<th>$R(r,1.0)$</th>
<th>$A\rho$ (cm)</th>
<th>Tel./inst.</th>
</tr>
</thead>
<tbody>
<tr>
<td>04-25.41</td>
<td>1.78</td>
<td>-109.68</td>
<td>16.230</td>
<td>13.846</td>
<td>87.4</td>
<td>TRAPPIST</td>
</tr>
<tr>
<td>04-25.42</td>
<td>1.78</td>
<td>-109.67</td>
<td>16.160</td>
<td>13.776</td>
<td>93.2</td>
<td>TRAPPIST</td>
</tr>
<tr>
<td>04-25.42</td>
<td>1.78</td>
<td>-109.67</td>
<td>16.210</td>
<td>13.826</td>
<td>89.0</td>
<td>TRAPPIST</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>