Energy-efficient Signalling in QoS Constrained Heterogeneous Networks

Long D. Nguyen, Hoang D. Tuan and Trung Q. Duong

Abstract—This paper considers a heterogeneous network (HetNet), which consists of one macro base station (MBS) and numerous small cell base stations (SBSs) cooperatively serving multiple user terminals. The first objective is to design cooperative transmit beamformers at the base stations to maximize the network energy efficiency (EE) in terms of bits per Joule subject to the users’ quality of service (QoS) constraints, which poses a computationally difficult optimization problem. The commonly used Dinkelbach-type algorithms for optimizing a ratio of concave and convex functions are not applicable. The paper develops a path-following algorithm to address the computational solution to this problem, which invokes only a simple convex quadratic program of moderate dimension at each iteration and quickly converges at least to a locally optimal solution. Furthermore, the problem of joint beamformer design and SBS service assignment in the three-objective (EE, QoS and service loading) optimization is also addressed. Numerical results demonstrate the performance advantage of the proposed solutions.

Index Terms—Heterogeneous networks, energy efficiency, QoS constraint, service loading, fractional programming, path-following method.

I. INTRODUCTION

Heterogeneous networks (HetNets) have recently been considered as a solution for supporting the unprecedented data increase and consistent quality of service (QoS) within the fifth-generation wireless networks (5G) [1]–[3]. A HetNet consists of macro base stations (MBSs) and small-cell base stations (SBSs) with low power consumption and short range of coverage, which are densely deployed in different locations to bring them closer to the users so as to improve QoS and reduce the radiated signal power. A key challenge for the successful deployment of such HetNets is to efficiently handle the intra- and inter-tier interference [4], [5].

On the other hand, the larger amount of hardware and infrastructure needed for numerous base stations in HetNets leads to a substantial increase of the circuit power consumption, which is a serious ecological and economical concern [6]. In fact, the energy efficiency (EE) in terms of bits per Joule is another figure of merit in assessing 5G systems [7], [8]. An active/sleep (on/off) regime for MBSs to save the HetNet energy was proposed in [9], while configuration guidelines for energy-efficient HetNets consisting of massive multiple-input multiple-output (MIMO) MBSs and SBSs were provided in [10]–[12].

It should be noted that the design of transmit beamformer for the network EE is different from that for conventional beamformer power optimization, which aims at minimizing the beamforming power subject to the users’ QoS throughput (see e.g. [13], [14] and references therein). The objective in EE is a ratio of the network sum throughput and the total power consumption, which includes the beamformer power, so maximizing the EE objective does not quite mean minimizing the beamformer power. In our previous work [15], we have optimized the network EE performance using the Dinkelbach’s method and a novel group sparsity for joint linear precoder design and small-cell switching-off approach. However, the existing approaches to EE maximization use the Dinkelbach-type algorithms [16] of fractional programming as the main tool for obtaining computational solutions (see e.g. [17]–[19] and references therein). Realizing the shortage of [17], [18] in guaranteeing the QoS in terms of the users’ throughput thresholds in maximizing EE, which causes undesirable QoS discrimination, the authors of [19] considered EE in a QoS constrained context. Each Dinkelbach’s iteration then constitutes a difficult nonconvex program, which was addressed in [19] by semi-definite relaxation (SDR). As analysed in details in [20], SDR not only increases the problem dimension substantially but performs very poorly whenever its rank-one matrix solution cannot be found. Moreover, SDR in [19] involves a logarithm function optimization, which is convex but quite computationally consuming.

In this paper, we consider a two-tier cooperative
network, which consists of a MBS and numerous SBSs cooperating in serving multiple user terminals with QoS. The research contributions are detailed as follows.

- A novel path-following computational procedure is proposed, which invokes a simple convex quadratic program of moderate size at each iteration and converges to at least a locally optimal solution.
- An effective computational solution for another important problem in the three-objective (EE, QoS and BS service loading) optimization is also proposed. In this solution, service loading refers to the number of users that a BS should serve.

The paper is structured as follows. After the Introduction, Section II introduces the EE maximization problems and also analyses its computational challenges. Its path-following computational procedure is developed in Section III. Section IV considers a solution for the three-objective optimization problems.

Notation. Boldface upper and lowercase letters denote matrices and (column or row) vectors, respectively. The transposition and conjugate transpose of matrix X are respectively represented by X^T and X^H. I and 0 stand for identity and zero matrices of appropriate dimensions. $\mathbb{R}\{\cdot\}$ denotes the real part of its argument. $\|\cdot\|$ and $\|X\|$ are Euclidean norm of vector x and Frobenius norm of matrix X, respectively. $\mathcal{CN}(0, \sigma_x^2)$ is referred to Gaussian white noise with power σ_x^2. For matrices $X_1,...,X_k$ of same column number, the matrix $[X_1;\ldots;X_k]$ is created by vertically stacking $X_1,...,X_k$.

II. PROBLEM STATEMENT

We consider a downlink two-tier network, in which one MBS referred to as BS 0 and S small cell base stations (SBSs) referred to as SBS 1, ..., SBS S share the same frequency spectrum as illustrated by Fig. 1. The set of BSs is $S = \{0, 1, \ldots, S\}$. The MBS is equipped with M_0 antennas while each SBS s is equipped with M_s antennas. In what follows, define $M_0 = M_0$ for $s = 0$ and $M_s = M$ for $s \neq 0$. The total transmit antenna number is $M = M_0 + SM$. All BSs, which are connected to a central processor (CP) via backhaul links, are supposed to cooperate to serve K users, each of which is equipped by a single antenna.

It is assumed that the CP has access to global channel state information $h_{k}^s \in \mathbb{C}^{1 \times M_s}$ between BS s and user k. All BSs cooperate to convey symbol x_k with the normalized power $P(\gamma_k^2) = 1$ to user $k \in K = \{1, \cdots, K\}$, which is beamformed by $f_k^s \in \mathbb{C}^{M_s}$ at BS s before transmission. The received signal at user k is given by

$$y_k = \left(\sum_{s=0}^{S} h_{k}^s f_k^s \right) x_k + \sum_{i \in K \setminus \{k\}} \left(\sum_{s=0}^{S} h_{k}^s f_i^s \right) x_i + n_k,$$

(1)

where n_k is the additive white Gaussian noise $\mathcal{CN}(0, \sigma_n^2)$. The first summation term in (1) represents the desired signal, while the second and third terms express the multiple user interference and noise, respectively.

To suppress the interference in (1), we employ the block diagonalization [21] to make zero-forcing

$$\sum_{s=0}^{S} h_{k}^s f_k^s = 0 \forall i \neq k.$$

(2)

For

$$h_k \triangleq [h_k^0, h_k^1, \ldots, h_k^S] \in \mathbb{C}^{1 \times M_0},$$

and

$$f_k \triangleq [f_k^0, f_k^1, \ldots, f_k^S] \in \mathbb{C}^{M_0},$$

equation (1) is rewritten by

$$y_k = h_k f_k x_k + \sum_{i \in K \setminus \{k\}} h_i f_i x_i + n_k.$$

(4)

Under the zero-forcing condition (2), the information throughput (in nats) at user k is

$$C_k(f_k) = \ln(1 + |h_k f_k|^2 / \sigma_n^2).$$

(5)

On the other hand, for $F \triangleq (f_1, \ldots, f_K)$, the total power consumption for the downlink transmission is calculated by [10], [22]

$$P_{\text{total}}(F) = \sum_{s=0}^{S} \frac{1}{\lambda_s} \sum_{k=1}^{K} ||f_k^s||^2 + P_{\text{cir}},$$

(6)

where $\lambda_s \in (0, 1)$ is the power efficiency of the amplifier of BS s and $P_{\text{cir}} = M_0 P_m + \sum_{s=1}^{S} M_s P_{m,s} + \sum_{s=0}^{S} P_{c,s}$ is the total circuit power to operate BSs. Therein, P_m and
where the EE objective in (15a) is the ratio between the total network throughput and the total transmission power. The constraint in (15b) imposes a QoS throughput requirement on each user \(k \), namely its throughput must be larger than or equal to a predetermined threshold \(C_k \). Constraints (15c) and (15d) are the sum power and per-antenna power constraints at BS \(s \), respectively.

Note that the numerator in the objective function in (15a) is not a concave function. Therefore the objective function in (15a) is not a ratio of a concave function and a convex function. Also, (15b) is nonconvex constraints. In other words, each Dinkelbach type’s iteration, which aims at solving

\[
\max_T \sum_{k=1}^{K} \ln(1 + |\overline{h}_kt_k|^2/\sigma_k^2) \tag{16a}
\]

\[-\tau(\sum_{s=0}^{S} \frac{1}{\lambda_s} \sum_{k=1}^{K} ||G^s_k t_k||^2 + P_cir) \tag{16b}
\]

s.t. (15b) - (15d)

in finding \(\tau \) such that the optimal value of (16) is zero,\(^1\) is computationally intractable because (16) is still a nonconvex program. SDR was used to addressed (16) in [19], however, this method may yield poor performance and inconsistency in this instance [20].

Our next section will provide a path-following computational procedure to address EEM (15) directly bypassing the computationally prohibitive optimization problem (16).

III. Proposed Method

Firstly, as observed in [23], for \(\overline{h}_k \triangleq e^{-j \arg(\overline{h}_k \ell_t_k)} t_k \), one has \(|\overline{h}_kt_k| = \overline{h}_k t_k = \Re \{\overline{h}_kt_k\} \geq 0 \) in (15a) and (15b) while \(||G^s_k t_k||^2 = ||G^s_k G^s_k t_k||^2 \) and \(G^s_k t_k (G^s_k t_k)^H = G^s_k t_k (G^s_k t_k)^H \) for all \((k, s) \in K \times S \) in (15c) and (15d). Therefore, \(|\overline{h}_kt_k|^2 \) in (15a) and (15b) can be equivalently replaced by

\[
(\Re \{\overline{h}_kt_k\})^2
\]

with

\[
\Re \{\overline{h}_kt_k\} \geq 0, k \in K. \tag{17}
\]

The nonconvex constraint (15b) is equivalent to the convex constraint

\[
\Re \{\overline{h}_kt_k\} \geq \sigma_k \sqrt{e^{C_k} - 1}, k \in K. \tag{18}
\]

By using an additional scalar variable \(t \) satisfying the convex constraint

\[
\sum_{s=0}^{S} \frac{1}{\lambda_s} \sum_{k=1}^{K} ||G^s_k t_k||^2 + P_cir \leq t, \tag{19}
\]

\(^1\)such \(\tau \) obviously is the optimal value of (15)
EEM (15) is equivalently expressed by

\[
\max_{T,t} f(T, t) = \frac{\sum_{k=1}^{K} \ln(1 + (\Re\{\tilde{h}_k t_k\})^2/\sigma_k^2)}{t} \tag{20a}
\]

s.t. \quad (15c), (15d), (18), (19). \tag{20b}

Initialized by a feasible point \(T^{(0)} \) for the convex constraint (20b) and

\[
t^{(0)} = \sum_{s \in S} \frac{1}{\lambda_s} \sum_{k \in \mathcal{K}} ||G_k t_k^{(0)}||^2 + P_{\text{cir}}
\]

we process the following successive approximations for \(\kappa = 0, 1, \ldots \):

Step 1. Using the inequality

\[
x^2 \geq 2x\bar{x} - \bar{x}^2 \quad \forall \ x > 0, \bar{x} > 0 \tag{21}
\]

to obtain

\[
(\Re\{\tilde{h}_k t_k\})^2 \geq 2\Re\{\tilde{h}_k t_k\} \Re\{\tilde{h}_k t_k^{(\kappa)}\} - (\Re\{\tilde{h}_k t_k^{(\kappa)}\})^2 \tag{22}
\]

over the trust region

\[
2\Re\{\tilde{h}_k t_k\} \geq \Re\{\tilde{h}_k t_k^{(\kappa)}\}, k \in \mathcal{K}. \tag{23}
\]

Step 2. Using the inequality

\[
\ln(1 + z) \geq \ln(1 + \bar{z}) + \frac{z}{\bar{z} + 1} - \frac{z^2}{\bar{z} + 1} \tag{24}
\]

whose proof is given in the Appendix, to obtain

\[
\ln(1 + (\Re\{\tilde{h}_k t_k\})^2/\sigma_k^2) \geq \ln(1 + (2\Re\{\tilde{h}_k t_k\} \Re\{\tilde{h}_k t_k^{(\kappa)}\} - (\Re\{\tilde{h}_k t_k^{(\kappa)}\})^2)/\sigma_k^2 \geq d^{(\kappa)}_k - \frac{b^{(\kappa)}_k}{2c^{(\kappa)}_k \Re\{\tilde{h}_k t_k\} - d^{(\kappa)}_k} \tag{25}
\]

for

\[
c^{(\kappa)}_k \triangleq \Re\{\tilde{h}_k t_k^{(\kappa)}\} > 0, \tag{26a}
\]

\[
d^{(\kappa)}_k \triangleq (\Re\{\tilde{h}_k t_k^{(\kappa)}\})^2 > 0, \tag{26b}
\]

\[
a^{(\kappa)}_k \triangleq \ln(1 + d^{(\kappa)}_k)/\sigma_k^2 + \frac{d^{(\kappa)}_k}{\sigma_k^2 + d^{(\kappa)}_k} > 0, \tag{26c}
\]

\[
b^{(\kappa)}_k \triangleq (d^{(\kappa)}_k)^2/(\sigma_k^2 + d^{(\kappa)}_k) > 0. \tag{26d}
\]

Step 3. Using the inequality

\[
1/t \geq 2/\ell - t/\ell^2 \quad \forall \ t > 0, \ell > 0 \tag{27}
\]

to obtain

\[
\sum_{k=0}^{K} \ln(1 + (\Re\{\tilde{h}_k t_k\})^2/\sigma_k^2) \geq f^{(\kappa)}(T, t) \tag{28}
\]

for the concave function

\[
f^{(\kappa)}(T, t) \triangleq a^{(\kappa)}_k \left(\frac{2}{\ell^{(\kappa)}} - \frac{t}{(t^{(\kappa)})^2} \right) - \sum_{k=1}^{K} \frac{b^{(\kappa)}_k}{t(2c^{(\kappa)}_k \Re\{\tilde{h}_k t_k\} - d^{(\kappa)}_k)^2}, \tag{29}
\]

where

\[
0 < a^{(\kappa)}_k \triangleq \sum_{k=1}^{K} a^{(\kappa)}_k. \tag{30}
\]

Step 4. Solve the convex quadratic program (QP)

\[
\max_{T,t} f^{(\kappa)}(T, t) \quad \text{s.t. } (20b), (23), \tag{31}
\]

which is an inner convex approximation [24] of the nonconvex program (20), to generate the next feasible point \((T^{(\kappa+1)}, t^{(\kappa+1)})\).

Using (31), in Algorithm 1, we propose a QP-based path-following algorithm to solve EEM (20). The initial point \((T^{(0)}, t^{(0)})\) for (20) is easily located because all the constraints in (20) are convex.

Algorithm 1: Path-following algorithm for the EEM (20)

1: **Initialization**: Choose a feasible point \((T^{(0)}, t^{(0)})\) for (20). Set \(\kappa := 0 \).
2: **Repeat**
3: \quad Solve the QP (31) for the optimal solution \((T^{(\kappa+1)}, t^{(\kappa+1)})\).
4: \quad Set \(\kappa := \kappa + 1 \).
5: **Until** convergence of the objective in (20).

Proposition 1: Algorithm 1 generates a sequence \(\{(T^{(\kappa)}, t^{(\kappa)})\}\) of improved points for (20), which converges to a Karush-Kuhn-Tucker (KKT) point.

Proof: Note that

\[
f(T, t) \geq f^{(\kappa)}(T, t) \forall T, t
\]

and

\[
f(T^{(\kappa)}, t^{(\kappa)}) = f^{(\kappa)}(T^{(\kappa)}, t^{(\kappa)}).
\]

Hence, as far as \((T^{(\kappa+1)}, t^{(\kappa+1)}) \neq (T^{(\kappa)}, t^{(\kappa)})\):

\[
f(T^{(\kappa+1)}, t^{(\kappa+1)}) \geq f^{(\kappa)}(T^{(\kappa+1)}, t^{(\kappa+1)}) > f^{(\kappa)}(T^{(\kappa)}, t^{(\kappa)}) = f(T^{(\kappa)}, t^{(\kappa)}),
\]

where the second inequality follows from the fact that \((T^{(\kappa+1)}, t^{(\kappa+1)})\) and \((T^{(\kappa)}, t^{(\kappa)})\) are the optimal solution and a feasible point of (31), respectively. This result shows that \((T^{(\kappa+1)}, t^{(\kappa+1)})\) is a better point to (20) than \((T^{(\kappa)}, t^{(\kappa)})\).
Furthermore, the sequence \(\{(T^{(k)}, t^{(k)})\}\) is bounded by constraints in (20b). By Cauchy’s theorem, there is a convergent subsequence \(\{(T^{(\kappa)}, t^{(\kappa)})\}\) with a limit point \((\bar{T}, \bar{t})\), i.e.,
\[
\lim_{\kappa \to +\infty} f(T^{(\kappa)}, t^{(\kappa)}) = f(\bar{T}, \bar{t}).
\]
For every \(\kappa\), there is \(\nu\) such that \(\kappa_0 \leq \kappa \leq \kappa_{\nu+1}\), so
\[
0 = \lim_{\nu \to +\infty} [f(T^{(\kappa)}, t^{(\kappa)}) - f(T, \bar{t})]
\leq \lim_{\kappa \to +\infty} [f(T^{(\kappa)}, t^{(\kappa)}) - f(T, \bar{t})]
\leq \lim_{\nu \to +\infty} [f(T^{(\kappa_{\nu+1})}, t^{(\kappa_{\nu+1})}) - f(T, \bar{t})] = 0,
\]
which shows that
\[
\lim_{\kappa \to +\infty} f(T^{(\kappa)}, t^{(\kappa)}) = f(\bar{T}, \bar{t}).
\]
Each accumulation point \(\{(\bar{T}, \bar{t})\}\) of the sequence \(\{(T^{(\kappa)}, t^{(\kappa)})\}\) is indeed a KKT point according to [25, Th. 1].

IV. SPARSE BEAMFORMING FOR THE THREE-OBJECTIVE OPTIMIZATION

For realizing the outcome of the EE maximization problem (15), it requires that the CP must upload all \(f_k^s x_k\) to all SBSs. Intuitively, due to its low power and short range of coverage, each SBS is unable to contribute much in conveying symbols intended for those users, who are out of its effective coverage range. Therefore, it may be not efficient to offload the symbols intended for these users to it. In this section, we consider EEM (15) in the context of sparse
\[
F = [f_k^s]_{(k, s) \in \mathcal{K} \times (\mathcal{S} \setminus \{0\})},
\]
as \(f_k^s \approx 0\) means that there is no need to offload \(f_k^s x_k\) for user \(k\) to SBS \(s\).

This motivates us to consider the following optimization to promote its sparsity [26]
\[
\max_{T, t} f(T, t) - \gamma \sum_{(k, s) \in \mathcal{K} \times (\mathcal{S} \setminus \{0\})} \ln(1 + ||G_k^s t_k||^2/\epsilon)
\text{ s.t. } (20b),
\]
where \(0 < \epsilon \ll 1\) and \(\gamma > 0\) is the sparsity penalty parameter. In what follows we call (33) three-objective optimization problem (300) because by considering (33) we incorporate simultaneous three objectives: EE, users’ QoS and BS association for serving the users. It is obvious that the inclusion of the nonconvex function \(\gamma \sum_{(k, s) \in \mathcal{K} \times (\mathcal{S} \setminus \{0\})} \ln(1 + ||G_k^s t_k||^2/\epsilon)\) in the objective in (33) makes the latter more computationally challenging than EEM (15). However, we will see shortly that a

QP-based path-following computational procedure is still available for addressing 300 (33).

Using the inequality
\[
\ln(1 + x) \leq \ln(1 + \bar{x}) + \frac{x - \bar{x}}{1 + \bar{x}} \quad \forall \ x \geq 0, \bar{x} \geq 0,
\]
which follows from the concavity of function \(\ln(1 + x)\), for \((T^{(\kappa)}, t^{(\kappa)})\) which is feasible for (20b), the following inequality holds true
\[
\ln(1 + ||G_k^s t_k||^2/\epsilon) \leq g_{k,s}^{(\kappa)}(t_k),
\]
with
\[
g_{k,s}^{(\kappa)}(t_k) \triangleq \ln(1 + ||G_k^s t_k||^2/\epsilon) + \frac{||G_k^s t_k||^2 - ||G_k^s t_k^{(\kappa)}||^2}{\epsilon + ||G_k^s t_k^{(\kappa)}||^2}.
\]
Recalling that \(f^{(\kappa)}(T, t)\) defined from (29) is a lower bound of \(f(T, t)\), the following QP
\[
\max_{T, t} f^{(\kappa)}(T, t) - \sum_{(k, s) \in \mathcal{K} \times (\mathcal{S} \setminus \{0\})} g_{k,s}^{(\kappa)}(t_k)
\text{ s.t. } (20b), (19), (23),
\]
is solved at \(\kappa\)th iteration to generate the next feasible point \((T^{(\kappa + 1)}, t^{(\kappa + 1)})\), is an inner approximation of 300 (33).

Using (36), in Algorithm 2, we propose a QP-based path-following algorithm to solve 300 (33). Its convergence is proved similarly to Proposition 1.

Algorithm 2 : Path-following algorithm for 300 (33)

1: Initialization: Choose a feasible point \((T^{(0)}, t^{(0)})\) for (20). Set \(\kappa := 0\).

2: Repeat

3: Solve the QP (36) for the optimal solution \((T^{(\kappa + 1)}, t^{(\kappa + 1)})\).

4: Set \(\kappa := \kappa + 1\).

5: Until convergence of the objective in (33).

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we use numerical examples to evaluate the performance of the proposed algorithms. The MBS is equipped with \(M_0 = 10\) antennas and is located at the macro cell centre. All \(S = 4\) SBSs are equipped with \(M_s = 2\) antennas, which are uniformly distributed in the macro cell. \(K = 14\) users are randomly distributed but there is at least one user in the coverage area of each SBS as shown in Fig. 2. The channel model is generated by the simulation parameters are provided in Table I, which mainly follow those studied in prior works [10], [27]. We
also set $C_k = 0.2 \text{ bps/Hz}$ for QoS constraint (15b) and $P_{s}^{\text{max}} = P_{s\text{bs}}$ for $s \geq 1$ and $P_{s}^{\ell,\text{max}} = P_{s}^{\text{max}}/M_s$ for per-antenna power constraints (15d). We set $\epsilon = 10^{-6}$ and $\gamma = 10^{-5}$ in solving 300 (33).

![Fig. 2. The scenario of HetNet.](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro-cell coverage</td>
<td>250m</td>
</tr>
<tr>
<td>Small-cell coverage</td>
<td>50m</td>
</tr>
<tr>
<td>Distance between MBS and SBSs</td>
<td>$\geq 150m$</td>
</tr>
<tr>
<td>Distance between MBS and users</td>
<td>$\geq 50m$</td>
</tr>
<tr>
<td>Carrier frequency / Bandwidth</td>
<td>2 Gz / 10 MHz</td>
</tr>
<tr>
<td>Maximal MBS power</td>
<td>$P_0 = 43 \text{ dBm}$</td>
</tr>
<tr>
<td>Maximal SBS power</td>
<td>$P_s = 30 \text{ dBm}$</td>
</tr>
<tr>
<td>Path loss from MBS to user</td>
<td>$128.1+37.6\log_{10} R \text{ [dB]}$, R in km</td>
</tr>
<tr>
<td>Path loss from SBS to user</td>
<td>$140.7+36.7\log_{10} R \text{ [dB]}$, R in km</td>
</tr>
<tr>
<td>Shadowing standard deviation</td>
<td>8dB</td>
</tr>
<tr>
<td>Noise power density</td>
<td>-174 dBm/Hz</td>
</tr>
<tr>
<td>The power amplifiers parameter</td>
<td>$\lambda_0 = 0.388, \lambda_s = 0.052$</td>
</tr>
<tr>
<td>The circuit power per antenna</td>
<td>$P_{ma} = 189 \text{ mW}$, $P_n = 5.6 \text{ mW}$</td>
</tr>
<tr>
<td>The non-transmission power</td>
<td>$P_{c,0} = 40 \text{ dBm}$, $P_{c,s} = 20 \text{ dBm}$</td>
</tr>
</tbody>
</table>

![Fig. 3. The convergence of Algorithm 1 for EE performance.](image)

![Fig. 4. The average EE performance versus the allowed transmit power P_s at SBSs.](image)

![Fig. 5. The average sum throughput versus the allowed transmit power P_s at SBSs.](image)

Fig. 3 demonstrates a typical convergence of Algorithm 1 and Algorithm 2 for a representative channel realization. Algorithm 1 and Algorithm 2 converge within 10 iterations. Interestingly, the EE part in the objective in (33) also iteratively increases.

We observe an obvious gap in EE performance and corresponding sum throughput between EEM (20) and
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2626363, IEEE Access

<table>
<thead>
<tr>
<th>SBS</th>
<th>UE1</th>
<th>UE2</th>
<th>UE3</th>
<th>UE4</th>
<th>UE5</th>
<th>UE6</th>
<th>UE7</th>
<th>UE8</th>
<th>UE9</th>
<th>UE10</th>
<th>UE11</th>
<th>UE12</th>
<th>UE13</th>
<th>UE14</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBS 1</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
</tr>
<tr>
<td>SBS 2</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>SBS 3</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>SBS 4</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>On</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

TABLE II

SBS ASSOCIATION IN 3OO.

3OO (33) in Fig. 4 and Fig. 5. Table II shows users’ association of each SBS for service under a representative channel realization. The CP has to upload only 13 intended beamformed symbols to SBSs in 3OO (33) instead of uploading all 56 beamformed symbols in EEM (20). In consistence with Fig. 2, Table II reveals that SBS 4 serves only user 7 and user 14, who are sufficiently close for its effective service. Both users 7 and user 14 are also far away from other SBS so they are served by SBS 4 and MBS only. Indeed, Fig. 2 and Table II confirm that each SBS serve the users, who are closer to it.

To see how the SBS beamformer power in the denominator and the sum throughput in the numerator interplay in optimizing the EE objective in (20) and (33) we vary P_{sbs} in the next simulation. Fig. 4 shows that EE performances saturate when the maximal transmit power P_{sbs} at SBSs passes a specific threshold 16 dBm. When the beamformer power is constrained small, the denominator of the EE objective in (20) and (33) defined from (6) is dominated by the constant circuit power P_{cir} so the EE objective is maximized by maximizing its numerator. In contrast, the EE objective is likely maximized by minimizing its denominator once the latter is dominated by the beamformer power. This explains that both EE objective and its numerator saturate in Fig. 4 and Fig. 5 for P_{sbs} beyond the value 16 dBm in the simulation. Interestingly, Fig. 6 also supports this observation: the actual transmit power is increased to improve the sum throughput for P_{sbs} from 8 dBm to 16 dBm and then saturates for $P_{sbs} > 16$ dBm, where it is kept minimal. This means the value $P_s = 16$ dBm is the best power constraint for the network EE. We also observe that 3OO (33) utilizes less power than EEM (20) in optimizing EE.

To show the efficiency of 3OO (33) we also include in Fig. 4-6 the EE performance and the corresponding sum throughput and transmit power when the CP randomly uploads $f_k^*x_k$ to SBS s as follows. For each SBS s, take randomly three user k for setting the additional constraints $\|G_k^*t_k\|^2 \leq 10^{-4}$ in solving EEM (20).

Next, we investigate the impact of the QoS thresholds \overline{C}_k in (15b) to the EE performance in EEM (20) and 3OO (33). Under the SBS beamformer power limit in Table I, the EE performance does not seem to be sensitive to varied \overline{C}_k as Fig. 7 confirms. For simulating Fig. 7 we set $\overline{C}_k \equiv \overline{C}$ only for those users, who are not in a coverage range of any SBS. For other users we set the threshold $3\overline{C}$. According to Fig. 7 the EE performance in the three methods does not drop much until \overline{C} becomes larger than a specific value of 1.6 bps/Hz. This specific value of \overline{C} is optimal for balancing the three mentioned optimization objectives. Fig. 8 also supports this point: with \overline{C} larger than 1.6 bps/Hz, a substantial increase in the SBS transmit beamforming power is needed to meet such high QoS. As a result, the denominator increases substantially in the EE objective in (20) and (33) but the numerator remains almost flat as Fig. 9 shows. Consequently, the corresponding EE objective is dropped.
We also compare the EE performance with that by minimizing the dominator and maximizing the numerator of the EE objective in (20) [13], [14]:

\[
P_{\text{min}}: \min_{\mathbf{T}} \sum_{s=0}^{S} \sum_{k=1}^{K} ||G_s^k t_k||^2 \\
s.t. \quad (15b), (15c), (15d) \tag{37}
\]

and

\[
R_{\text{max}}: \max_{\mathbf{T}} K \sum_{k=1}^{K} \ln(1 + \frac{||\vec{p}_k t_k||^2}{\sigma_k^2}) \\
s.t. \quad (15b), (15c), (15d). \tag{38}
\]

Interestingly, according to Fig. 7, \(C = 1.6 \) bps/Hz is also optimal for balancing three objectives in the beamformer power optimization problem (37). Additionally, using the sum throughput maximization problem (38) is not recommended for addressing the network EE.

VI. CONCLUSIONS

We have presented a cooperative beamforming design for maximizing the EE of a two-tier HetNet, where three-objective (EE, QoS, service loading) were incorporated. As the commonly used Dinkelbach type algorithms are no longer applicable to our problems, we have developed path-following algorithms for computational solution, which quickly converge at least to a locally optimal solution. The numerical results have been provided to demonstrate the usefulness and merit of the developed algorithms.

APPENDIX: PROOF FOR (24)

Note that function \(\eta(x) = \ln(1 + 1/x) \) is convex in \(x > 0 \). Therefore, for any \(x > 0 \) and \(\bar{x} > 0 \), it is true that [24]

\[
\ln(1 + 1/x) \geq \ln(1 + 1/\bar{x}) + \frac{\partial \eta(\bar{x})}{\partial x}(x - \bar{x}) \\
= \ln(1 + \frac{1}{\bar{x}}) + \frac{1}{1 + \bar{x}} - \frac{1}{1 + \bar{x}}x. \tag{39}
\]

Then (24) is obtained by replacing \(z = 1/x \) and \(\bar{z} = 1/\bar{x} \) into (39).

REFERENCES

