16S pan-bacterial PCR can accurately identify patients with ventilator-associated pneumonia

Ventilator-associated pneumonia (VAP) remains a significant problem in intensive care units (ICUs) and despite reductions in reported VAP rates antibiotic use remains high. The most common indication for antibiotic use remains suspected respiratory infections. VAP is associated with increased antimicrobial resistance and mortality especially when antibiotics are delayed or inadequate. However, due to the various conditions that can mimic VAP, commonly only 30% of those suspected of having VAP subsequently have this diagnosis confirmed. The delays in obtaining results from conventional microbiological cultures lead to empirical use of broad-spectrum antibiotics of which a significant proportion is later deemed unnecessary. The excessive use of antibiotics is associated with increased antimicrobial resistance and mortality.

The ubiquitous presence of a 16S ribosomal RNA gene in bacteria offers the possibility of detecting a wide range of bacteria in a single PCR. Amplification of the 16S rRNA gene in a PCR assay results in amplification of all bacteria in a sample. Therefore, this offers potential as a screening test for suspected VAP. The aim of this study was to derive and validate a real-time 16S PCR assay for diagnosing confirmed VAP.

METHODS

Samples from two previously described cohorts of adult patients with clinically suspected VAP recruited from UK ICUs formed the derivation and confirmation cohorts respectively. Briefly, patients were recruited if they met criteria for suspected VAP namely new or worsening chest X-ray changes following at least 48 hours of ventilation, accompanied by two or more of: temperature >38°C; white cell count >11×10⁹/L; or mucopurulent sputum. In the derivation cohort patients were excluded if they had received new antibiotics within the 3 days prior to recruitment; no such exclusion was applied to the confirmation cohort. Patients underwent protocolised bronchoscopic bronchoalveolar lavage (BAL) and an aliquot of BAL fluid was processed using a semiquantitative culture method. This culture was used as our reference diagnostic standard, with growth at >10⁴ colony forming units/mL (CFU/mL) of BAL fluid being defined as ‘VAP positive’ and growth <10⁴ CFU/mL as ‘VAP negative’, these cut-offs being in line with established standards.

Full details of sample processing are described in the online supplementary section. Briefly, the fraction of lavage not used for conventional culture was centrifuged to produce a cell-free supernatant, followed by nucleic acid extraction. The 16S PCR assays are described below; assay 1 and assay 2 were conducted in geographically separate laboratories.

Real-time 16S PCR assay 1

The primer and probe sequences targeting the 16S rRNA gene have been described previously. The probe contained a carboxyfluorescein (FAM) label on the 5’ end with a Black Hole Quencher 1 (BHQ1) on the 3’ end. Primers and probe was synthesised by Eurogentec (Liège, Belgium). The final 16S PCR reaction mix contained 1.25U HotStarTaq polymerase and 1 × reaction buffer (Qiagen, Manchester, UK), 4 μM MgCl₂, 0.2 mM deoxynucleotide mix (dNTP), 0.25 μM primer 27-F, 0.75 μM primer 16S 1RR-B, 0.3 μM probe 514-S, nuclease-free water (Promega, Southampton, UK) and 10 μL nucleic acid extract to a final volume of 25 μL. Real-time PCR was carried out on the ABI 7500 instrument (Applied Biosystems, Life Technologies, Paisley, UK). This assay was used for samples from the derivation cohort, to establish proof in principle of the diagnostic utility of this approach, and was also used for samples from the confirmation cohort.

Real-time 16S PCR assay 2

The primer and hybridisation probe sequences targeting the 16S rRNA gene have been described previously. The hybridisation probe contained a FAM label on the 5’ end with a BHQ1 on the 3’ end. Primers and hybridisation probe were synthesised by Sigma Genosys (Sigma-Aldrich, Ebersberg, Germany).

The final 16S PCR reaction mix contained 1X Platinum uracil DNA glycosylase Mastermix (Life Technologies, Paisley, UK), 0.2 μM bovine serum albumin (Sigma, Dorset, UK), a total of 4 mmol/L MgCl₂, 0.4 μM forward and reverse primers, 0.1 μM hybridisation probe, nuclease-free water (Promega, Southampton, UK) and 2 μL of target template for a final reaction volume of 10 μL. Real-time qPCR was carried out on a Light Cycler 480 instrument (Roche, Indianapolis, Indiana, USA). This assay was used on samples from the confirmation cohort only.

For the purposes of analysis, the metric was cycles to cross threshold (Ct) as a measure of 16s rRNA gene load and hence bacterial burden. A higher bacterial load will result in a lower time to cross threshold, that is, a lower Ct value. Details of statistical analyses used can be found in the online supplementary methods section. Both studies had approvals from relevant research ethics committees; full details are in the online supplementary section.

RESULTS

In the derivation cohort, samples from 67 patients were available, of whom 10 (15%) had ‘microbiologically confirmed VAP’. In the ‘confirmation’ cohort samples from 92 patients were available for analysis; 26 (28%) met the culture criteria for ‘microbiologically confirmed VAP’. The demographic details and organisms cultured are shown in the online supplementary section (see online supplementary tables S1 and S2).

16S PCR assay 1 demonstrated that patients with confirmed VAP had a higher bacterial burden, as signified by a lower Ct value, than those without VAP (figure 1A). When evaluated for diagnostic ability by ROC curve, assay 1 demonstrated excellent sensitivity and specificity.
Figure 1 Real-time 16S PCR results as expressed by cycles to cross threshold (Ct) for samples from patients. (A) Ct values from assay 1 among derivation cohort patients with and without confirmed ventilator-associated pneumonia (VAP). N=67, 57 non-VAP and 10 VAP, error bars show median and IQR. **** p<0.0001 by Mann-Whitney U test. (B) Ct values from assay 1 among confirmation cohort patients with and without confirmed VAP. N=92, 66 non-VAP and 26 VAP, error bars show median and IQR. **** p<0.0001 by Mann-Whitney U test. (C) Ct values from assay 2 among confirmation cohort patients with and without confirmed VAP. N=92, 66 non-VAP and 26 VAP, error bars show median and IQR. **** p<0.0001 by Mann-Whitney U test.

Table 1 Diagnostic performance of the two 16S assays

<table>
<thead>
<tr>
<th>Curve</th>
<th>Assay 1 derivation</th>
<th>Assay 1 confirmation</th>
<th>Assay 2 confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC ROC</td>
<td>0.94 (0.86 to 1.0)</td>
<td>0.89 (0.83 to 0.95)</td>
<td>0.84 (0.75 to 0.94)</td>
</tr>
<tr>
<td>p<0.0001</td>
<td></td>
<td>p<0.0001</td>
<td>p<0.0001</td>
</tr>
<tr>
<td>Youden optimum cut-off (Ct)</td>
<td>29.85</td>
<td>29.43</td>
<td>21.59</td>
</tr>
<tr>
<td>Youden optimum sensitivity/specificty (95% CIs)</td>
<td>100 (69 to 100)/72 (58 to 83)</td>
<td>100 (87 to 99)/67 (54 to 78)</td>
<td>89 (70 to 98)/80 (69 to 89)</td>
</tr>
<tr>
<td>Maximum sensitivity optimum cut-off (Ct)</td>
<td>29.85</td>
<td>29.43</td>
<td>22.02</td>
</tr>
<tr>
<td>Maximum sensitivity/specificty (95% CIs)</td>
<td>100 (69 to 100)/72 (58 to 83)</td>
<td>100 (87 to 100)/67 (54 to 78)</td>
<td>100 (86 to 100)/15 (8 to 26)</td>
</tr>
</tbody>
</table>

(ROC curves displayed in online supplementary figure S1).

As avoiding false-negative results is important in rapid tests for VAP, we also report the specificity at maximum (100%) sensitivity.

AUC, area under the curve; Ct, cycles to crossing threshold; VAP, ventilator-associated pneumonia.

In the derivation cohort, 35 (52%) patients were receiving antibiotics on the day of recruitment. In the confirmation cohort, 69 (75%) were receiving antibiotics and 14 (15%) had undergone a change of antibiotics within the past 3 days. Receipt of antibiotics and recent change in antibiotics were not associated with changes in 16S Ct values (see online supplementary results and table S3).

Figure S2 shows the relationship between Ct values for the two 16S assays, demonstrating a non-linear association.

DISCUSSION

To our knowledge, this is the first report of the use of real-time 16S PCR for diagnosing VAP. Although 16S rRNA gene sequencing has been used to explore the microbiome of ventilated patients, data on its diagnostic potential have been absent. In deriving and confirming a test, with a high agreement in test performance between the two cohorts, we demonstrate clear potential for the clinical utility of this test. Turnaround time is 4–6 hours; therefore, this test could impact on antibiotic use, which may otherwise only be rationalised following the results of conventional cultures at 48–72 hours. This study has a number of strengths. First, we were able to perform derivation and confirmation in two distinct cohorts, with confirmation in a cohort recruited from a diverse group of 12 ICUs. The results are therefore likely to be widely applicable;
indeed, the microbiological spectrum found is similar to reports from other countries. Second, by using consistent diagnostic procedures within each cohort, we avoided some of the problems which occur with the diagnosis of VAP.\(^4\)

Our rate of microbiologically confirmed VAP in both cohorts (23%) is at the lower end of the reported range\(^1\) but not out of keeping with other reports and we believe this may, in part, reflect the use of highly standardised BAL protocols.

A disadvantage of this study is that samples were obtained bronchoscopically, requiring resource and exposing patients to a small but definite risk, and the applicability of this test to other sample types cannot be inferred. The assays we describe here are also limited to bacterial detection. The differences between the two assays tested, and the use of stored samples, highlight the need for external prospective validation before this measure could be implemented in routine clinical practice. Further refinements of assays may also improve diagnostic performance. The reference standard of growth of organisms on a highly standardised BAL protocol is required for the diagnosis of VAP.\(^14\)

Our rate of microbiologically confirmed VAP is comparable to other studies.\(^3,4\) However this study is limited by the small sample size, which may have affected the ability of this test to other sample types and the generalisability of the results. The small number of samples included in this study may also have limited the ability to detect differences in outcome. However, this is not a limitation of the BAL protocol, which is highly standardised, nor of the assays used, which are well-established and are used in routine clinical practice.

A potential disadvantage of this study is that the assays we describe here are limited to bacterial detection. However, this may, in part, reflect the use of highly standardised BAL protocols. The differences between the two assays tested, and the use of stored samples, highlight the need for external prospective validation before this measure could be implemented in routine clinical practice. Further refinements of assays may also improve diagnostic performance. The reference standard of growth of organisms on a highly standardised BAL protocol is required for the diagnosis of VAP.

Contributors ACM designed the study, obtained funding, recruited patients, analysed data and wrote the manuscript. NG performed the assays, analysed the data and revised the manuscript. JPMcK performed the assays, analysed the data and revised the manuscript. TPH designed the study, recruited patients and revised the manuscript. FD performed the assays, analysed the data and revised the manuscript. RM obtained the funding, designed and supervised the study, recruited patients and revised the manuscript. MM obtained the funding, designed and supervised the study, and wrote the manuscript.

Funding This study was funded by: the Northern Ireland Health and Social Care Research and Development division; the Hospital Infection Society; the Department of Health and Wellcome Trust through the Health Innovation Challenge Fund (HIFX/0510/078); and the Sir James Thomson Charitable Trust (03/17A).

Competing interests ACM is a member of the advisory board of Serenex and is chief investigator on a diagnostics study jointly funded by Innovate UK and Becton Dickinson. KT has worked on evaluations of diagnostic systems for Becton Dickinson, Cepheid, Enigma, GenMark and SelectRMD has received research grant income from Innovate UK for a diagnostics consortium (with Randox Diagnostics Ltd), investigator-led grant income from Pfizer Ltd and is a consultant/advisor to Gilead Sciences Ltd. All other authors declare no conflicts of interest.

Patient consent Obtained.

Ethics approval Lothian Research Ethics Committee (REC), NRES North East REC, Scotland A REC.

Provenance and peer review Not commissioned; externally peer reviewed.

References

16S pan-bacterial PCR can accurately identify patients with ventilator-associated pneumonia

Andrew Conway Morris, Naomi Gadsby, James P McKenna, Thomas P Hellyer, Paul Dark, Suveer Singh, Timothy S Walsh, Danny F McAuley, Kate Templeton, A John Simpson and Ronan McMullan

Thorax published online December 14, 2016

Updated information and services can be found at: http://thorax.bmj.com/content/early/2016/12/14/thoraxjnl-2016-209065

References

This article cites 12 articles, 5 of which you can access for free at: http://thorax.bmj.com/content/early/2016/12/14/thoraxjnl-2016-209065#BIBL

Open Access

This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

Open access (229)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/