Strength reduction of till under dynamic pore pressure condition

R. HARLEY†, V. SIVAKUMAR*, D. HUGHES§ and S. DONOHUE§

Cuttings in heavily overconsolidated clays are known to be susceptible to progressive deformation caused by creep and fatigue that usually begins at the toe of the slope. The progressive deformation leads to strength reduction with time at constant stress (or called softening) and could be accelerated by fluctuation of groundwater level associated with more extreme rainfall events predicted through climate change. The purpose of this paper is to assess the mechanism of progressive deformation due to creep and fatigue using element testing on samples of till. The samples were subjected to fully drained loading and the deviator stresses were held constant at various percentages of peak failure stress, while the pore water pressure was kept static or dynamic (fluctuating ±5 kPa) over a period of time. The results have shown that the samples experienced significant deformation even at a higher factor of safety (i.e. the failure deviator stress/deviator stress at which the pore water pressure was fluctuated) under pore water pressure dynamics.

KEYWORDS: pore pressures; stress path

INTRODUCTION
A slope failure of a deep cutting in glacial till at Dromore, along the A1 Belfast–Newry dual carriageway in Northern Ireland was reported by Hughes et al. (2007). The factor postulated for instigating the slope failures was a reduction in long-term shear strength due to a combination of progressive deformations, strain softening and dissipation of excess pore water pressure generated during initial excavations together with pore water pressure dynamics triggered by weather patterns. Such progressive deformation is generally referred to as ‘creep and fatigue’ (Bjerrum, 1967; Burland et al., 1977; Locat et al., 2011) and this terminology is used in the rest of the paper.

The research reported in this paper was based on a more recent, 10-year-old cutting also located along the A1 Belfast–Newry dual carriageway. This cutting, located at Loughbrickland, Northern Ireland (Fig. 1) is in a geological setting similar to the Dromore cutting, and is one of the deepest cuttings in Northern Ireland at 25 m high (Fig. 1(b)) and at a slope angle of 26°. The soil profile is composed of a weathered Greywacke (Silurian shale), overlain by a stiff lodgement till with an upper weathered zone (Fig. 1(b)). The site is fully instrumented to monitor pore water pressure dynamics, surface water balance, infiltration and meteorological conditions (Clarke, 2007; Carse, 2014; McLernon, 2014).

The deformation of slopes due to creep and fatigue is likely to be a contributing factor in the time-dependent strength reduction and degradation of slopes. It has long been recognised that, for many soils, the creep can be a significant contributor to the overall behaviour of geotechnical structures (Yin & Graham, 1999; Kellin, 2007; Karim et al., 2011). A number of elastic–viscoplastic models (Kutter & Sathisingam, 1992; Yin, 2001; Kellin et al., 2008; Karim et al., 2010) have been developed to predict the long-term performance of these structures, including cuttings. A reliable estimation of geotechnical parameters is therefore necessary in order to accurately predict the performance of such structures. This paper therefore reports the investigations carried out to understand this time-dependent behaviour of overconsolidated tills.

LABORATORY INVESTIGATION
The direction of principal stresses changes behind the slope. At the crest, the vertical stress is higher than the lateral (i.e. compression) and the reverse (extension) prevails at the toe. In the present investigation, the condition of the soil behind the slope at the crest was examined. The investigation would ideally have been conducted on undisturbed soil samples of tills. However, obtaining undisturbed 50 mm dia. triaxial samples of till is very problematic due to the high gravel contents (Carse, 2014). As the intention of the research was to delineate the concept of deformation of slopes due to creep and fatigue, it was deemed that testing the response of reconstituted samples of till (without large gravel particles) would be satisfactory within the remit of the research. Disturbed samples were collected from varying depths and particles of more than 5 mm were removed. The remaining material was oven dried for 24 h at 85°C and finally crushed using a pestle and mortar to powder form. Particle size distribution (PSD) was carried out on the bulk and the reconstituted materials in accordance with BS EN 1997-2:2007 and the relevant information is shown in Fig. 2. The material from the bulk sample was identified as slightly gravelly sandy silty clay with a liquid limit (LL) of 38% and a plastic limit of 17%.

On the basis of the PSD, ignoring the two odd cases marked as S-1 and S-2 in Fig. 2, it appears that a maximum of about 17% of the larger gravel particles by dry mass have been removed to form the reconstituted samples. It is therefore acceptable to assume that the clay removed from the site was matrix dominated. To further give assurance on the comparability of the reconstituted samples with
Fig. 1. Location map (grid in ETRS_1989_UTM_Zone_29N): (a) A1 carriageway: Belfast to Dublin Euroroute 1 and contour map of Drumlin landscape surrounding ‘The Three Sisters’ Drumlin showing the new horizontal alignment of the dual carriageway and (b) the cross-section of Loughbrickland cutting.

Fig. 2. Particle size distribution of reconstituted samples (black) and bulk samples (grey)
in-situ samples, the ultimate state (or critical state) of the till from the original investigations carried out on slightly disturbed samples (105 mm dia.) during the excavation at Loughbrickland site is compared with the same obtained on reconstituted samples (discussed in detail later) in Fig. 3 and the agreement between the observations is good. Despite this, it is recognised that the reconstituted samples do not fully represent the in-situ conditions for two reasons: (a) anisotropy induced by the deposition process and (b) one-dimensional (1D) loading history imposed on the deposit for a long period, although, as discussed later, in the present investigation this is addressed to some extent by producing samples under 1D loading conditions.

Tests were carried out on 50 mm diameter, 100 mm high reconstituted overconsolidated samples. These samples were prepared by consolidating soil slurry mixed at 1·5 times the LL. The slurry was thoroughly mixed and was allowed to soak for 24 h before being consolidated in a 1D consolidation cell under a vertical pressure of 800 kPa to replicate the possible past stress history (Gregory & Bell, 1991; Carse, 2014). The one-dimensionally consolidated samples were then tested using a stress path apparatus. Side drains were used to accelerate the drainage process (Sivakumar et al., 2010). The radial and axial strains were measured locally by attaching a radial strain belt and inclinometers, respectively.

The samples were saturated using a standard procedure and a B value of at least 0·95 was obtained. Although the samples were previously consolidated in a 1D cylinder to 800 kPa, it was likely that the stress distribution along the sample may not be uniform due to the side friction between the sample and the consolidation cylinder. To ensure that the entire sample had experienced the same stress history, each sample was subsequently consolidated to 800 kPa in the stress path cell, in which the cell pressure was ramped at a rate of 100 kPa/d. It was assumed that the sample would still hold its anisotropic nature, since the complete removal of the previous 1D loading history would require a very high consolidation pressure in the stress path cell. After allowing the sample to equilibrate for 48 h, the cell pressure was then reduced in a ramped manner to unload the sample to the required effective consolidation pressures (Table 1). Saturation, loading and unloading the samples to the required effective stresses lasted for ~4 weeks.

Three series of tests were carried out. In testing series (A), three samples were tested in order to establish the peak failure envelope and the critical state line. The samples consolidated to effective consolidation pressures of 25, 50 and 100 kPa were subjected to fully drained loading using the stress control method at a rate of 1 kPa/h. This rate was established based on the consolidation characteristics of the sample and validated using some preliminary testing. The intention of the research was to establish the peak failure envelope and the critical (ultimate) state line. However, the latter cannot be established using stress control loading; therefore, the loading method was changed to strain control at a rate of 0·001 mm/h when the sample approached closer to the peak state.

In the second testing series (B), the investigation focused on the response of the sample under a constant deviator stress while holding static pore water pressure conditions. The samples were initially consolidated to 800 kPa of effective stress and unloaded to 50 kPa. The deviator stress was then applied on the sample using the stress control method and upon reaching a required deviator stress (90, 80 and 70% of the anticipated peak deviator stress), the loading was maintained constant for a prolonged period of time (4–5 weeks). When appropriate, the samples were subsequently subjected to further loading to critical state using the strain control method.

In the testing series (C), the deviator stress was taken to a target value (as in the case of test series B) and the pore water pressure was cycled by ±5 kPa in a ramped manner at a rate of 0·04 kPa/h. The samples were subsequently taken to the critical state.

DISCUSSION ON RESULTS

In total, eight samples were tested and they were all prepared in the same manner. The average initial void ratio of the samples was ~0·50 with a variation of ±0·015. This is considered to be repeatable given the fact that the material

![Fig. 3. Ultimate state of reconstituted and undisturbed samples](image)

Table 1. Summary of compression loading tests

<table>
<thead>
<tr>
<th>Testing series</th>
<th>Initial condition</th>
<th>Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cell pressure: kPa</td>
<td>PWP: kPa</td>
</tr>
<tr>
<td>A</td>
<td>325</td>
<td>300</td>
</tr>
<tr>
<td>A</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>A</td>
<td>400</td>
<td>300</td>
</tr>
<tr>
<td>B</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>B</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>C</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>C</td>
<td>350</td>
<td>300</td>
</tr>
</tbody>
</table>
had a granular content of 50% with some marginal variations.

Figure 4 shows the stress–strain behaviour of the samples subjected to monotonic loading (continuous loading without any rest periods) until the critical state. As discussed above, the loading was initially stress controlled and subsequently strain controlled, and the changeover between these loading mechanisms is indicated by circular data points in Fig. 4(a). To ensure good data quality, one of the tests carried out as part of the testing series (B) is also included. The later part of the stress–strain curve of this test is removed to avoid confusion (this will be discussed later). There is good consistency between the stress–strain curves, which gives further credence to the sampling method adopted in this research. The sample consolidated to 25 kPa reached peak state at an axial strain of 1·5% and critical state at ~3·2%. At this stage, multiple visible shear

Fig. 4. Stress–strain behaviour and failure envelope under monotonic loading: (a) deviator stress against axial strain; (b) volumetric strain against axial strain; and (c) deviator stress against mean effective stress

Fig. 5. Testing schedule (B): stress–strain behaviour and shear strains developed under constant deviator stresses and static pore water pressure conditions: (a) deviator stress against axial strain; (b) volumetric strain against axial strain; and (c) accumulative shear strain against time
planes had formed. The sample consolidated to 50 kPa reached peak state and critical state in the same order of axial strains and eventually failed on shear planes. However, no significant sign of peak state was observed in the case of the sample consolidated to 100 kPa. In all three cases, the samples initially contracted, and subsequently dilated as they approached the peak and critical states (Fig. 4(b)). The peak angle of internal friction of the reconstituted material is \(\sim 32^\circ \) and the cohesion is about 7 kPa (Fig. 4(c)). The angle of internal friction at critical state is \(\sim 33^\circ \). The later part of this paper will discuss about whether this cohesion is permanent or will erode away if the sample experiences creep.

In test series (B), the samples were loaded to 90 and 80% (and a repeat test at 90%) of the peak deviator stress. Figures 5(a) and 5(b) show the deviator stress and volumetric strain plotted against axial strain and Fig. 5(c) shows the accumulated shear strain plotted against time (log scale). The test carried out under monotonic loading conditions is also included in this figure for comparison purposes. The consistency of the data leading up to the target deviator stress is remarkably similar. Upon reaching the target deviator stress, the control programme was used to hold the axial load on the sample constant rather than the deviator stress. Since the samples were deforming under a maintained load, the area of the sample gradually changed and therefore the deviator stress reduced slightly. Nevertheless, the samples exhibited continuous deformation under maintained loading conditions and this deformation is regarded as creep. The samples eventually reached the critical state and began to fail on the shear plane. The deviator stress at which the samples approached critical state is much similar to that of the sample monotonically loaded. The time-dependent response of the sample is shown in Fig. 5(c), where the acute development of accumulative shear strain occurred closer to the critical state.

The most intriguing observation from the investigation is from the sample subjected to 80% of the peak deviator stress and then held at a constant axial load for 4 weeks. The sample underwent creep at the same rate as that of other samples at the beginning of the maintained loading conditions, but exhibited a slowdown as the resting period continued. To see if the shear strain that the sample experienced had caused any strength reduction, the sample was subsequently loaded to the critical state using the strain control method. It is remarkable that the sample initially reached a peak and eventually approached the critical state. The peak deviator stress identified from this test is significantly smaller than that identified from the monotonic loading test, implying that the shear strain that the sample experienced during maintained loading conditions had caused some noticeable softening, implying that the
cohesion that the sample inherited from the original loading is not permanent and can be eroded by long-term creep as suggested by Lacerda (1976). The approximate reduction in cohesion is 3 kPa, which is significant in terms of stability of slope cuts at critical angles.

The deformation due to creep and fatigue and consequently the reduction in cohesion can be accelerated by pore water pressure dynamics due to environmental changes. Figure 6 shows the stress–strain curves and stress paths of two samples subjected to pore water pressure dynamics in which the pore water pressure was cycled by ±5 kPa, after reaching a target deviator stress of 80 and 70%. Also included in this figure is the stress–strain curve for monotonic loading for comparison. In the case of 80% target deviator stress, the sample continued to deform under dynamic pore water pressure conditions (Fig. 6(c)) and the rate of accumulative shear strain was much faster than that of the sample tested without any pore water pressure dynamics. It implies that the pore water pressure dynamics can play a key role in the creep response and consequently it contributed to a rapid reduction in strength. However, when the pore water pressure was cycled at a maintained deviator stress of 70% of the peak, the rate of creep (in the form of accumulative shear strain) was significantly reduced and it became insignificant after 10 weeks of pore water pressure dynamics. At this stage, the sample was monotonically loaded to failure and the observation seems to suggest that there was no reduction in cohesion due to the small amount of creep that took place during the resting period.

CONCLUSION
The aspect of deformation due to creep and fatigue was examined using a series of stress path tests carried out on reconstituted tills. The samples were loaded monotonically and in some cases the deviator stress was maintained constant at a given percentage of peak failure stress. When subjected to 90% of the peak failure stress, the sample continued to experience shear strain; however, when this percentage was reduced to 80%, the accumulative shear was less, although the subsequent monotonic loading has shown a clear indication of reduced cohesion. Pore water pressure dynamics aggravated the accumulation of shear strain due to creep and fatigue. Under dynamic pore water pressure conditions, the sample subjected to 80% of the peak failure stress experienced significantly high shear strain and reached the critical state. However, the accumulated shear strain was less significant and the reduction in cohesion was insignificant when the dynamic pore water pressure condition was imposed on the sample at 70% of peak failure stress.

REFERENCES

WHAT DO YOU THINK?
To discuss this paper, please email up to 500 words to the editor at journals@ice.org.uk. Your contribution will be forwarded to the author(s) for a reply and, if considered appropriate by the editorial panel, will be published as a discussion.