Fictional responses from Vonesh et al.


Published in:
Biological Invasions

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© The Author(s) 2017
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Fictional responses from Vonesh et al.

Jaimie T. A. Dick · Mhairi E. Alexander · Anthony Ricciardi · Ciaran Laverty · Paul O. Downey · Meng Xu · Jonathan M. Jeschke · Wolf-Christian Saul · Matthew P. Hill · Ryan Wasserman · Daniel Barrios-O’Neill · Olaf L. F. Weyl · Richard H. Shaw

Vonesh et al. (2017) in their critique of Dick et al. (2017) erect a straw man with their thought experiment; they look for reasons why comparative functional response (CFR) might fail, when CFR clearly and repeatedly succeeds. We can view CFR as a hypothesis that posits “differences in magnitude, or shape, of invader/native FRs explain and predict invader ecological impact”. We can test this hypothesis with a mini-meta-analysis: in 18 out of 22 study systems, and 39 of 47 individual CFR studies, FRs of known damaging invaders are significantly higher than FRs of native counterparts (Dick et al. in press). These systems consider 1–5 pairwise resource comparisons; large numbers are not needed for CFR to have high explanatory and predictive power (and practical utility in targeted studies). Vonesh et al. (2017) list reasons why CFR studies should fail: differing conversion efficiencies, mortality, interference, body size,
density—yet in the face of these (likely) differences, CFR remains highly predictive. We agree that refining CFR is desirable; this is achieved by incorporating relative invader:native abundances, a proxy for numerical responses, which captures differential conversion efficiencies, plus aggregative and reproductive responses (see Dick et al. in press). This improves the predictive capacity of CFR as, for example, relatively low invader per capita effects can be multiplied by relatively high abundances. CFR also provides mechanistic and predictive assessments applicable to emerging and potential invaders, specifically what invasion history and impact indices cannot achieve.

Finally, it is disappointing that Vonesh et al. (2017) ignored the true essence and thrust of Dick et al.’s advocacy, that CFR provides a testable hypothesis that can truly unify invasion ecology across taxonomic/trophic groups and habitats. We thus finish with our own thought experiment: would the FR (with/without comparators) of any invasive species (actual or potential) be unmeasurable or uninformative?

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References


J. M. Jeschke · W.-C. Saul
Department of Biology, Chemistry Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany

J. M. Jeschke · W.-C. Saul
Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 34, 14195 Berlin, Germany

M. P. Hill
Centre for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
e-mail: matthill@protonmail.com

R. Wasserman · O. L. F. Weyl
South African Institute for Aquatic Biodiversity (SAIAB), P. Bag 1015, Grahamstown 6140, South Africa
e-mail: r.shaw@cabi.org

e-mail: ryanwas21@gmail.com

O. L. F. Weyl
e-mail: O.Weyl@saiab.ac.za

R. Wasserman · O. L. F. Weyl
Centre for Invasion Biology, South African Institute for Aquatic Biodiversity (SAIAB), P. Bag 1015, Grahamstown 6140, South Africa

e-mail: ryanwas21@gmail.com

O. L. F. Weyl
e-mail: O.Weyl@saiab.ac.za

© Springer