Mineralogical Characterisation to improve understanding of oral bioaccessibility of Cr and Ni in Basaltic Soils in Northern Ireland

Published in:
Journal of Geochemical Exploration

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
MINERALOGICAL CHARACTERISATION TO IMPROVE UNDERSTANDING OF ORAL BIOACCESSIBILITY OF Cr AND Ni IN BASALTIC SOILS IN NORTHERN IRELAND

Siobhan F. Cox a*, Gavyn Rollinson b and Jennifer M. McKinley a

a School of Natural and Built Environment, Queen's University Belfast, Belfast, BT9 5AG, UK.
s.cox@qub.ac.uk

b Camborne School of Mines, College of Engineering, Mathematics & Physical Sciences, University of Exeter, Penryn Campus, Cornwall, TR10 9FE, UK. G.K.Rollinson@exeter.ac.uk

c School of Natural and Built Environment, Queen's University Belfast, BT7 1NN, UK.
j.mckinley@qub.ac.uk

*Address correspondence to Siobhan Cox, School of Natural and Built Environment, Queen's University Belfast, Belfast, BT9 5AG, UK. Phone:+44 28 9097 4152, Fax:+44 28 9097 4278;

E-mail:s.cox@qub.ac.uk
ABSTRACT

Underlying bedrock is often the source of elevated levels of potentially toxic elements (PTEs) (including Ni and Cr) in soils, which can be at concentrations exceeding regulatory guidelines for the protection of human health. However geogenic contaminants are often not significantly bioavailable to humans as they are bound tightly within the soil matrix. Therefore oral bioaccessibility testing can be used to refine human health risk assessment by quantifying bioaccessible PTEs in soils, but should be augmented with soil mineralogy data to support its use in risk assessment. Elemental mapping using Electro Probe Microanalysis (EPMA) and mineralogical mapping using QEMSCAN®, an automated mineral/phase analysis system based on a scanning electron microscope, were combined with quantitative X-Ray Diffraction (XRD) and previous oral bioaccessibility and non-specific sequential extraction (CISED) results for 3 soil samples overlying Palaeogene basalt lavas in Northern Ireland, to determine the effect of soil mineralogy on oral bioaccessibility of Ni and Cr. Results indicate that Cr concentrations are principally related to recalcitrant chrome spinel and primary iron oxides, which explains the relatively low bioaccessibility of Cr. In contrast, Ni is more widely dispersed within the soils, with a proportion of total Ni found in carbonates and weathering products, including secondary iron oxides and precursor clay minerals, leading to the higher oral bioaccessibility measurements recorded for Ni than Cr.

Suggested keywords

Nickel, Chromium, Oral bioaccessibility, Basalt, Mineralogical analysis, Elemental mapping

Graphical abstract

![Graphical abstract](image)
Highlights

- Ni and Cr analysis of Basaltic soils overlying Antrim Basalts of Northern Ireland
- Combined chemical and mineralogical data for improved understanding
- High resolution analysis of samples, consistent across analytical methods
- Bioaccessible Ni in precursor clay minerals, secondary Fe-oxides and carbonates
- Low Cr bioaccessibility as Cr predominantly in chrome spinel and primary Fe-oxides

Abbreviations

- BAF: Bioaccessible Fraction
- BARGE: Bioaccessibility Research Group of Europe
- BSE: Backscattered Electron
- CISED: Non-specific Sequential Extraction coupled with Chemometric Analysis
- CTM: Causeway Tholeiite Member
- EDS: Energy Dispersive Spectrometer
- EPMA: Electron Probe Micro Analyser
- G: Gastric Phase
- GI: Gastrointestinal Phase
- LBF: Lower Basalt Formation
- LOI: Loss on Ignition
- PTE: Potentially Toxic Element
<table>
<thead>
<tr>
<th></th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>QEMSCAN</td>
<td>Quantitative Evaluation of Minerals by SEM</td>
</tr>
<tr>
<td>63</td>
<td>S4UL</td>
<td>Suitable for Use Level</td>
</tr>
<tr>
<td>64</td>
<td>SDD</td>
<td>Silicon Drift Detector</td>
</tr>
<tr>
<td>65</td>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>66</td>
<td>SGV</td>
<td>Soil Guideline Value</td>
</tr>
<tr>
<td>67</td>
<td>SOC</td>
<td>Soil Organic Carbon</td>
</tr>
<tr>
<td>68</td>
<td>UBF</td>
<td>Upper Basalt Formation</td>
</tr>
<tr>
<td>69</td>
<td>UBM</td>
<td>Unified BARGE Method</td>
</tr>
<tr>
<td>70</td>
<td>WDS</td>
<td>Wavelength Dispersive Spectrometers</td>
</tr>
<tr>
<td>71</td>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>72</td>
<td>XRFS</td>
<td>X-ray Fluorescence</td>
</tr>
</tbody>
</table>

1.0 INTRODUCTION

Elevated concentrations of nickel (Ni) and chromium (Cr) from both geogenic and anthropogenic sources have been identified in soils throughout the world including Canada (Vasiluk et al., 2011), Brazil (Colin et al., 1990), the Czech Republic (Quantin et al., 2008), Poland (Kierczak et al., 2007), Portugal (Costa et al., 2011), UK (Barsby et al., 2012; Palmer et al., 2014; Wragg et al., 2014), Italy (Albanese et al., 2015) and Greece (Albanese et al., 2015; Argyraki and Kelepertzis, 2014; Kelepertzis and Stathopoulou, 2013).

Total concentrations of these elements are often at levels exceeding regulatory guidelines suggesting they may potentially cause harm to human health. Recently this has been compounded by new toxicological advice (EFSA, 2015) which indicates that tolerable daily intakes of oral Ni are lower than was assumed in derivation of many of these guideline values. On this basis the Environment Agency in England and Wales withdrew the Soil Guideline Value (SGV) for nickel in 2015 and a new “suitable for use level” (S4UL) for Ni of 130mg kg$^{-1}$ was published by Nathanail et al. (2015) for a residential land use that includes the production of home-grown produce. S4ULs indicate a level of minimal or tolerable level of risk, indicating a site is suitable for the land use the S4UL has been derived for (Nathanail et al., 2015).

Concentrations of PTEs above S4ULs may require further assessment of risks to determine if any remedial action is required.

However, total concentrations do not reflect the amount of a contaminant that is actually bioavailable to humans via the oral, inhalation and dermal pathways (Ruby et al., 1999). The use of oral bioaccessibility testing provides risk assessors with an estimation of the amount of an element that will
become dissolved in the gastro intestinal tract (and is therefore accessible to humans via the oral pathway), allowing assessors to more accurately consider potential risks posed to human health. The Unified BARGE Method (UBM) was developed by the BARGE (Bioaccessibility Research Group of Europe) research group (Wragg et al., 2011) and has been validated against in vivo studies for As, Pb and Cd (Denys et al., 2012). However, as oral bioaccessibility can be affected by a number of factors including mineralogy, particle size, solid-phase speciation and encapsulation (Cave et al., 2011; Ruby et al., 1999), a “lines of evidence” approach (CIEH, 2009) is recommended to support oral bioaccessibility testing, utilising information relating to soil mineralogy and the mobility and distribution of the contaminant in the soil.

McIlwaine et al. (2014) used data from the Tellus Geochemical Survey of Northern Ireland (Smyth, 2007) and geological mapping to identify domains (areas where a readily identifiable factor can be shown to control the concentration of an element) for a number of PTEs in Northern Ireland. Soils overlying the Antrim Lava Group were identified as a domain with elevated Ni and Cr, with median Ni concentrations in the domain being approximately 4 times greater for Ni and 2.5 times greater for Cr than the rest of Northern Ireland. However oral bioaccessibility testing undertaken by (Barsby et al., 2012; Palmer et al., 2014) indicate the oral bioaccessibility of Cr and Ni in these soils is quite low (Cr < 5.5%; Ni < 44%). Investigations undertaken by Cox et al. (2013) found that bioaccessible Cr in the basaltic soils of Northern Ireland is strongly correlated with total Cr and Fe$_2$O$_3$, indicating that Cr is predominantly present in phases associated with Fe$_2$O$_3$ that have relatively low bioaccessibility.
Non-specific sequential extractions (CISED), showed that the majority of Cr was present in oxides, with only a very small component present in clays (Cox et al., 2013). In contrast Cox et al. (2013) found that bioaccessible Ni (both G and GI) was not strongly correlated with total Ni, most of the major oxides or Soil Organic Carbon (SOC). Indeed, CISED extractions showed that bioaccessible Ni was related to all identified soil components, including calcium carbonate, aluminium oxide, iron oxide and clay-related components, suggesting weathering significantly affects nickel bioaccessibility but has a less significant role in the bioaccessibility of Cr in these soils (Cox et al., 2013). However, without detailed data relating specifically to soil mineralogy and element distribution within the soils, interpretation of the role of mineralogy on the oral bioaccessibility of Ni and Cr was incomplete.

The aim of this research is to further investigate the controls on oral bioaccessibility of PTEs in Ni and Cr rich soils overlying the Antrim Basalts in Northern Ireland to provide evidence to support the use of oral bioaccessibility testing both in Northern Ireland and internationally. To meet this aim: 1) the mineralogy of soils overlying the Antrim Basalts is characterised using both quantitative XRD and QEMSCAN® analyses combined with detailed geochemical data; 2) detailed elemental and mineralogical mapping are compared to determine which minerals host total Ni and Cr; and 3) this information is related to results of previous bioaccessibility testing (Barsby et al., 2012) and non-specific sequential extractions (Cox et al., 2013) to elucidate how the oral bioaccessibility of both Ni and Cr is affected by soil composition.
2.0 MATERIALS AND METHODS

2.1 Study area

The Antrim Lava Group was formed in two cycles of volcanic activity that occurred about 60 million years ago (Lyle, 1979). It extends across the north eastern corner of Northern Ireland (Figure 1), covering an area of 4009 km\(^2\) (Cruickshank, 1997). The first cycle of volcanic activity produced olivine theoleiite lavas that formed the Lower Basalt Formation (LBF), whilst fractionation of this magma gave rise to intermediate lavas towards the top of the Lower Basalts (Mitchell, 2004). The second cycle of volcanic activity, approximately 5 million years later, formed the Upper Basalt Formation (UBF) (also olivine theoleiites) (Mitchell, 2004). In the period between the formation of the Upper and Lower Basalts, a period of extensive chemical weathering of the Lower Basalts occurred, which resulted in the formation of the Interbasaltic Formation comprising of deeply weathered and lateritised basalts that are found between the Upper and Lower Basalt Formations (Hill et al., 2001). Also during the period between the cycles of volcanic activity that formed the Upper and Lower Basalts, eruption of the mainly quartz tholeiites of the Causeway Tholeite Member (CTM)) occurred (Mitchell, 2004). The Upper and Lower Basalts are composed principally of plagioclase feldspars (labradorite), Mg-rich olivine containing small spinal inclusions and pyroxene (augite) (Lyle, 1979) with magnetite, ilmenite and apatite also present as accessory minerals (Hill et al., 2001).
Figure 1 Map showing the Antrim Lava Group.

Figure 2a shows the spatial distribution of total Ni concentrations determined during the Tellus survey. Median total Ni concentrations in the UBF and LBF were 100 mg kg\(^{-1}\), with the highest Ni concentration recorded in the Tellus Survey (334 mg kg\(^{-1}\)) reported for the LBF (Cox et al., 2013). 516 samples overlying the Antrim Basalts (31%) have total Ni concentrations that exceed the “Suitable for Use Level” (S4UL) for Ni (130 mg kg\(^{-1}\)) for a residential landuse (with homegrown produce) derived by Nathanail et al. (2015).

Similar trends are observed for total Cr concentrations (Fig. 2b), which are generally about 3 to 4 times greater than total Ni concentrations (Cox et al., 2013). Cr speciation was not determined during the Tellus survey, so both the S4UL for Cr (III) and Cr (VI) have been used for comparison. All samples from the study area (1664 samples; 100%) have total Cr concentrations that exceed the residential S4UL.
for Cr VI of 6 mg kg$^{-1}$, whilst 3 samples (0.18%) exceed the residential with gardens S4UL for Cr III of 910 mg kg$^{-1}$.

Cox et al., (2013) reported that bioaccessible Ni and Cr were generally greater in gastric phase extracts than in the gastrointestinal phase, with samples overlying the LBF containing the greatest amount of bioaccessible Ni (mean gastric phase concentration of 6.17 mg kg$^{-1}$), while the UBF showed greater amounts of bioaccessible Cr (mean gastric phase concentration of 4.55 mg kg$^{-1}$). Ni and Cr bioaccessible fraction (BAF) was also greater in the gastric phase than in the gastrointestinal phase, with Ni BAFs being up to 8 times greater than Cr BAF.

Figure 2 Maps showing the spatial distribution of (A) total Ni and (B) total Cr (by XRF (mg kg$^{-1}$)) for all Tellus soil samples overlying the Antrim Lava Group.
2.2 Collection, preparation and soil analyses

During the Tellus geochemical survey, samples were disaggregated and sieved to a <2 mm fraction (Smyth, 2007), prior to being analysed for a range of elements and major oxides using X-ray fluorescence (XRFS) as well as pH and soil organic carbon (SOC) (Smyth 2007). Barsby et al., (2012) reported the results of oral bioaccessibility testing for these samples using the Unified BARGE Method (UBM) (Denys et al., 2012; Wragg et al., 2011). Both the actual bioaccessibility of PTEs (mg kg$^{-1}$) and the bioaccessible fraction (BAF) (the ratio of bioaccessible concentration from the UBM test and total concentration by XRFS), are reported in the gastric and gastrointestinal phase to allow discussion of all four measurements. Quality control procedures employed for XRFS, pH and LOI analyses are presented in Smyth (2007), and Barsby et al., (2012) provides full details of the use of reference materials, duplicates and blanks for UBM testing.

Three sieved and dried surface soil samples (558363, 559503, 560141), retrieved from areas overlying the Antrim Lava Group were recovered from the Tellus archive for quantitative XRD analyses and mineralogical and elemental mapping. For optical and e-beam microscopy, two samples (558363, 559503) were prepared as polished thin sections by embedding in epoxy resin followed by grinding and polishing to 30 μm thickness with ethane diol and aluminium oxide, with final cleaning undertaken using alcohol. A third sample (560141) was prepared as a 30 mm diameter epoxy mount, and polished to a 1 micron finish using diamond media. For e-beam analysis, all samples were carbon coated with approximately a 25 nm layer of carbon, to allow the electron beam to conduct across the sample surface.
2.3 Quantitative XRD analysis

Quantitative XRD analysis was undertaken by X-Ray Mineral Services Colywn Bay, UK, using a Philips PW1730 X-ray Generator, with copper anode tube equipped with a Philips PW1050 Goniometer and graphite monochromator.

2.3.1 Whole (Bulk) Rock Analysis

Samples were disaggregated using a pestle and mortar and ‘micronised’ using a McCrone Micronising Mill to obtain a mean particle diameter of between 5 - 10 microns. This was mixed with water and the resulting slurry was dried overnight at 80°C, re-crushed and homogenised to a fine powder and back-packed into an aluminium cavity mount, producing a randomly orientated sample for presentation to the x-ray beam.

Samples were analysed between 2° and 70° 2θ (theta) with a step size of 0.05°/sec using x-ray radiation from a copper anode at 35kV, 30mA. X-Ray Mineral Services “Traces” and “Search-Match” software was used to compare the x-ray diffraction pattern from the unknown sample with the International Centre for Diffraction Data PDF-4 Minerals database to identify unknown minerals. Amorphous content was calculated by spiking with silicon (metal powder) and Siroquant software was used to quantify phases identified in each sample.
2.3.2 Clay Mineral analysis

The <2 micron fraction of a 5 gram split of disaggregated sample, was separated by ultrasound, shaking and centrifugation. The total weight of clay extracted was determined by removing a 20ml aliquot of the final clay suspension and evaporating to dryness at 80°C. Clay XRD mounts were obtained by filtering the clay suspension through a Millipore glass microfiber filter and drying the filtrate on the filter paper. The samples were analysed as an untreated clay, after saturation with ethylene glycol vapour overnight and following heating at 380°C for 2 hours and 550°C for one hour. The initial scan for these four treatments was between 3° and 35° 2θ (theta) at a step size of 0.05°/sec using x-ray radiation from a copper anode at 40kV, 30mA. The untreated sample was also analysed between 24-27° 2θ at a step size of 0.02 °/2 sec to further define kaolinite/chlorite peaks.

Diffractograms from the four clay treatments were overlain to identify the clay mineral assemblages present. Peak intensities were measured to calculate the relative amounts of clay minerals present, which were subsequently used to quantify the clay minerals with respect to the whole rock by reference to the total amount of <2 micron clay fraction. An indication of the clay minerals crystallinity was given by assessment of the peak width for each component.

2.4 Mineralogical mapping

Mineralogical mapping was undertaken using QEMSCAN®, an automated mineral/phase analysis system based on a scanning electron microscope (SEM) that provides rapid determination and quantification of
the mineralogy, chemical composition (through defined databases) and grain size of a sample (Gottlieb et al., 2000; Haberlah et al., 2011). QEMSCAN® is a mature technique that is over 40 years old and has been used in a variety of research projects (Pirrie and Rollinson, 2011; Santoro et al., 2014). Analysis was undertaken at the Camborne School of Mines, University of Exeter, using a QEMSCAN® 4300 system.

During QEMSCAN® analysis an electron beam is rastered across the sample surface producing a Backscattered Electron (BSE) image and X-rays which are used to identify the mineralogy. For this investigation, samples were analysed using the Fieldscan mode using iMeasure software, which measured each sample in fields (1.5mm squares) at a 10 μm X-ray pixel spacing, with the resin media ignored due to being below a pre-set BSE threshold. Data processing was undertaken using iDiscover software, which is an involved process that requires checks of the mineral database and refinement of the data specific to the context of the sample type. The resultant fields are then recombined (stitched) to give an overall false colour mineral map with corresponding data tables for mineral abundances and associations. The advantage of Fieldscan mode was that it examined the entire sample area providing excellent spatial modal mineralogy with between 1.3 and 2.4 million analysis points. However, pixel resolution was carefully designed to avoid excessive measurement time, thus minerals or textures less than the pixel resolution (10 microns) are poorly represented but compensated for by the BSE and element maps. The advantages and limitations of the QEMSCAN® technique are discussed in detail in Andersen et al. (2009) and Rollinson et al. (2011).
Standard operating conditions were 25kV and 5nA using a tungsten filament operating under a customized high vacuum. X-ray collection rate was 1000 counts combined from four EDS Bruker Silicon Drift (SDD) detectors, with a maximum X-ray resolution of around 1 micron. Operation of QEMSCAN® followed quality control procedures developed at the Camborne School of Mines, University of Exeter, for sample preparation, instrument calibration, operation and data processing. See Rollinson et al. (2011) for further details.

Minerals with similar chemical composition were grouped together and groups were described either by the elemental composition, or in some cases the minerals deemed most likely to be present as shown in Table 1. QEMSCAN® cannot separate polymorphs (minerals with the same chemistry but different crystallography) as its analysis is based on chemical spectra and minerals/phases with very similar or overlapping chemical spectra can be difficult to separate. Very fine grained material such as mixed clays (less than 5 microns) may also be difficult to separate chemically due to the beam excitation volume effects (Rollinson et al., 2011) and only elements that are greater than approx. 3% in concentration at each analysis point may be detected (Andersen et al., 2009). Total percentages for each mineral group reported here, have been corrected to include soil organic carbon (SOC) as measured during the Tellus survey, as SOC is not quantified by QEMSCAN® analysis.

<table>
<thead>
<tr>
<th>Mineral Category</th>
<th>Mineral Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background</td>
<td>All resin/mounting media and related edge effects</td>
</tr>
<tr>
<td>Chrome spinel</td>
<td>Includes any phase with Cr, Fe, Al and Mg; such as Chromite, Chrome metal and Chrome Spinel</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Fe Ox/CO₃</td>
<td>Fe oxides and carbonates such as Siderite, Hematite, Magnetite, Ti-Magnetite, Fe Metal and any other Fe-Oxide/Carbonate.</td>
</tr>
<tr>
<td>Mn phases</td>
<td>Includes Mn Silicates and Mn Fe Oxides</td>
</tr>
<tr>
<td>Rutile</td>
<td>Any phase with Ti and O; includes Rutile/Anatase/Brookite</td>
</tr>
<tr>
<td>Ilmenite</td>
<td>Any phase with Fe, Ti and O</td>
</tr>
<tr>
<td>Zircon</td>
<td>Any phase with Zr, Si and O</td>
</tr>
<tr>
<td>REE phases</td>
<td>Includes Monazite (Ce Phosphates)</td>
</tr>
<tr>
<td>Quartz</td>
<td>Quartz and other silica minerals</td>
</tr>
<tr>
<td>Plagioclase feldspar</td>
<td>Plagioclase Feldspars: phases with Na, Al, Si and O to Ca, Al, Si and O. May include a boundary effect with Quartz and Al oxide polishing media (mixed spectra looks like Albite)</td>
</tr>
<tr>
<td>K-Feldspar</td>
<td>Any phase with K, Al, Si and O; includes Orthoclase/Microcline/Sanidine</td>
</tr>
<tr>
<td>Muscovite/Illite</td>
<td>Muscovite Mica, may include Illite (K, Al, Si and O)</td>
</tr>
<tr>
<td>Fe Al K silicates</td>
<td>Any phase with Fe, Al, K and Si; such as Biotite Mica and any other Mica except Muscovite, may include Glauconite</td>
</tr>
<tr>
<td>Mg + Fe silicates</td>
<td>Any phase with Mg, Fe and Si; such as Olivine, Talc, Serpentine Group, includes Fe Silicates</td>
</tr>
<tr>
<td>Ca Mg Fe silicates</td>
<td>Any phase with Ca, Mg, Fe and Si (with or without Fe and Al); such as Hornblende, Tremolite, Augite, Diopside, Actinolite, maybe Amphiboles and Pyroxenes</td>
</tr>
<tr>
<td>Al silicates (excluding kaolinite)</td>
<td>Any phase with Al, Si and O; separated from Kaolinite by the Al-Si ratio. May contain low amounts of other elements such as Fe, Mg and Ca. May contain Albite</td>
</tr>
<tr>
<td>Kaolinite</td>
<td>Al silicates such as Kaolinite/Halloysite/Dickite and Topaz, and any other Al silicate</td>
</tr>
<tr>
<td>Fe Al (Mg) silicates</td>
<td>Any phase with Fe, Al and Si, with or without Mg; such as Chlorite/Clinochlore, Nontronite, Vermiculite</td>
</tr>
<tr>
<td>Calcite</td>
<td>Any phase with Ca, O and C</td>
</tr>
<tr>
<td>Apatite</td>
<td>Apatite and any other Ca Phosphates</td>
</tr>
<tr>
<td>Others</td>
<td>Any other mineral not included above. Boundary/polishing effects</td>
</tr>
</tbody>
</table>

Table 1 Mineral groupings used for reporting results of QEMSCAN analysis

2.5 Elemental mapping

Elemental analysis and mapping was undertaken at the School of Earth Sciences, University of Bristol using a JEOL JXA8530F electron probe microanalyser (EPMA), equipped with both a silicon drift detector (SSD) energy dispersive spectrometer (EDS) and 5 wavelength dispersive spectrometers. Results from the QEMSCAN analysis were used to identify locations for quantitative element point analysis and areas for elemental mapping on each of the three samples. Point locations included
representative examples of chrome spinel, iron oxide, calcite and apatite. Mapping was targeted on areas of typical clay composition and where it was suspected olivine was weathering within the basalt. Quantitative analysis of elemental concentrations was undertaken by WDS. Details of EPMA setup are summarised in Table 2.

The crystals and standards used were Al as Al$_2$O$_3$ (Amelia albite), Ca as CaO (Wollastonite), Cr as Cr$_2$O$_3$, Fe as FeO (Ilmenite), Mg as MgO (St John’s Island Olivine), Mn as MnO, Na as Na$_2$O (Ameilia albite), P as P$_2$O$_5$ (Durango apatite), Si as SiO$_2$ (St John’s Island Olivine), Ti as TiO$_2$ (Ilmenite), K as K$_2$O (Eifel sanidine); Ni and NiO, Zn as ZnO, V as V$_2$O$_3$ and Nb as Nb$_2$O$_5$ (LiNbO$_3$) and F as Durango apatite. V was measured using an overlap correction, which subtracts the overlapping Ti Kb component based on the intensity on the Ti Ka line.
The distribution of Mn, Ca, P, Mg, Ti, K, Si, Fe, Na, Al, Cr and Ni was determined using elemental mapping. Mn, Ca, P, Mg, Ti, K, Si and Fe were mapped using EDS, and Na, Al, Cr and Ni were mapped using WDS, with Ni mapped on two spectrometers. For the WDS elements a peak map and an upper background map was collected providing net count maps. The EDS maps are total counts. The maps were then calibrated using a calibration curve determined from a series of quantitative point analyses undertaken within each mapping area. The size of the measured areas for each map are shown in Table 3. All maps were measured with a step size of 1 µm.

<table>
<thead>
<tr>
<th>Map No</th>
<th>Sample No</th>
<th>Width (µm)</th>
<th>Height (µm)</th>
<th>Step size (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0029</td>
<td>558363</td>
<td>100</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>0030</td>
<td>558363</td>
<td>100</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>0031</td>
<td>559503</td>
<td>128</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>0032</td>
<td>559503</td>
<td>100</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>0043</td>
<td>558363</td>
<td>200</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>0059</td>
<td>560141</td>
<td>100</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>0061</td>
<td>560141</td>
<td>100</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>0063</td>
<td>560141</td>
<td>140</td>
<td>180</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3 Measured area and step size for each elemental map

3.0 RESULTS AND DISCUSSION

3.1 Geochemical data

Major element data (Table 4) shows that between 80 to 85% of the soils comprise Si, Al, Fe and SOC. The contribution these elements make to the soil is similar between all three soils reflecting that they overlie bedrock of similar origin. Ca and Mg are present in all soils at concentrations of approximately 2%, as would be expected given the presence of plagioclase feldspars and pyroxene in the underlying bedrock (Lyle, 1979). Sample 560141 contained more Ca than the other 2 samples, which is consistent
with the results of non-specific sequential extractions on these soils by Cox et al. (2013).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample</th>
<th>Sample</th>
<th>Average compositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>558363</td>
<td>559503</td>
<td>560141</td>
<td>Basalt (n=5)</td>
</tr>
<tr>
<td>SiO₂ %</td>
<td>39.60</td>
<td>39.50</td>
<td>43.40</td>
</tr>
<tr>
<td>TiO₂ %</td>
<td>1.56</td>
<td>1.37</td>
<td>1.08</td>
</tr>
<tr>
<td>Al₂O₃ %</td>
<td>13.10</td>
<td>14.70</td>
<td>13.50</td>
</tr>
<tr>
<td>Fe₂O₃ %</td>
<td>11.24</td>
<td>11.42</td>
<td>8.68</td>
</tr>
<tr>
<td>MnO %</td>
<td>0.22</td>
<td>0.27</td>
<td>0.11</td>
</tr>
<tr>
<td>MgO %</td>
<td>2.40</td>
<td>2.60</td>
<td>2.10</td>
</tr>
<tr>
<td>CaO %</td>
<td>1.76</td>
<td>2.53</td>
<td>3.10</td>
</tr>
<tr>
<td>Na₂O %</td>
<td>0.30</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>K₂O %</td>
<td>0.67</td>
<td>0.39</td>
<td>0.56</td>
</tr>
<tr>
<td>P₂O₅ %</td>
<td>0.32</td>
<td>0.56</td>
<td>0.41</td>
</tr>
<tr>
<td>Ba (ppm)</td>
<td>238</td>
<td>207</td>
<td>250</td>
</tr>
<tr>
<td>Ce (ppm)</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Cr (ppm)</td>
<td>448</td>
<td>300</td>
<td>293</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>93</td>
<td>142</td>
<td>72</td>
</tr>
<tr>
<td>Nb (ppm)</td>
<td>8</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Ni (ppm)</td>
<td>175</td>
<td>167</td>
<td>122</td>
</tr>
<tr>
<td>Pb (ppm)</td>
<td>21</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>Rb (ppm)</td>
<td>19</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Sn (ppm)</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sr (ppm)</td>
<td>42</td>
<td>82</td>
<td>116</td>
</tr>
<tr>
<td>Th (ppm)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>U (ppm)</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>V (ppm)</td>
<td>260</td>
<td>259</td>
<td>233</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>127</td>
<td>176</td>
<td>127</td>
</tr>
<tr>
<td>Zr (ppm)</td>
<td>166</td>
<td>106</td>
<td>95</td>
</tr>
</tbody>
</table>

Table 4 Geochemical composition of each soil sample (as determined by XRF analysis undertaken during the TELLUS survey) and averages geochemical composition for fresh and altered Antrim basalt. ¹ Average concentrations of the main horizons within the laterite profile (Hill et al., 2001)

Comparison of the geochemical composition of the soils with composition data reported by Hill et al.
Table 4) for the underlying basalt and the deeply weathered and lateritised basalts of the Interbasaltic Formation found between the Upper and Lower Basalt Formations, shows the soils are consistent with the weathered basalt, particularly the lithomarge layer from the laterite profile (Si, Ca, Mg and Na are all similar). Hill et al. (2001) report that the lithomarge is predominantly comprised of clays, which are mostly kaolinite and meta-halloysite at the top of the lithomarge profile, but also includes a layer of “saprock” at the base of the profile that contains montmorillonite and vermiculite (Hill et al., 2001).

3.2 Mineralogy

Quantitative XRD analysis determined that the amorphous content of the samples was between 65 to 80% (Figure 3). This very high amorphous content is likely to relate to organic materials (SOC was greater than 15% for these samples) and non-crystalline weathering products such as amorphous iron oxides (perhaps intergrown with clay minerals), and other precursor minerals for clays. The presence of large amounts of amorphous iron oxides would explain why significant amounts of the Fe identified by geochemical analysis was not identified by XRD. In their study of serpentine soils from the Czech Republic, Quantin et al., (2008) also found that sequential extractions revealed significant amounts (nearly 50%) of iron was present in iron (hydr)oxides that were not detected by XRD analysis.
Figure 3 Proportion of mineral components by QEMSCAN® (vol %) (left) and XRD (wt %)
(right). For details of mineral groupings used for QEMSCAN® see Table 1.

XRD analyses also showed that smectite, illite and chlorite constitute up to 15% of the samples (Figure 3), with the greatest clay content in the sample with the lowest amorphous content (558363), suggesting this soil is more weathered than the other samples. Although the amorphous content of the sample was high and it was suspected that a significant proportion of this was ‘clay like’ material (including precursor clay minerals and protoclays), the percentage of soils recovered for clay XRD analysis (<2 microns) was relatively low (1-8%). Images from QEMSCAN® and EPMA showed this was because the vast majority of the agglomerations in the soil were larger than 2 microns. Clay XRD showed that 68% of clay sized particles in sample 558363 and all clay sized particles in 559503 and 560141 were found to be a randomly interstratified illite/smectite, and the remainder of the clay fraction of sample 558363 was a poorly crystalised chlorite, again supporting the hypothesis that weathering of the soils is incomplete.

QEMSCAN® analysis added further support to this hypothesis as it determined that all three samples were composed primarily of minerals initially identified as Fe Al (Mg) silicates and Al silicates (65-70%) that were often identified at the scale of individual pixels (Figure 4), suggesting they may in fact reflect amorphous protoclays of variable content. Mineral association data from QEMSCAN® supports this, as Al silicates are significantly more likely to touch Fe Al (Mg) silicates than any other mineral. Therefore from this point on, these minerals have been grouped together into an ‘amorphous protoclay’ group.
QEMSCAN® also identified illite (<1.58%), mica (<0.97%) and kaolinite (<0.90%), with the greatest amounts of these minerals in sample 558363.

Figure 4 A typical intergrown clay grain from sample 558363

Quartz was found in all samples by both XRD (2-12%) and QEMSCAN® (2.43-8.25%) suggesting an input into the soils other than from the underlying basalts, perhaps due to movement of the glacial tills.

More plagioclase feldspar was identified by XRD (3.5-8.5%) than QEMSCAN® (1.63-4.01%), however QEMSCAN® also identified K-feldspar (0.34-1.03%) and Ca Mg Fe silicates that are most likely pyroxene (1.24-2.08%). Hematite were identified by XRD, as would be expected for soils overlying basalt bedrock, however the quantities of hematite determined (2-9%) did not account for all the Fe recorded in the geochemical analysis (8-12%) supporting the suggestion that the amorphous content includes non-crystalline iron oxides. QEMSCAN® identified a variety of metal oxides and hydroxides, at trace concentrations (<0.6%). These included titanium oxides, iron oxides, ilmenite, Mn-Fe oxides and
chrome spinels. Olivine was identified by QEMSCAN® to be present at low concentrations (<0.5%) in the soil, reflecting the fact that although it is present in the underlying basalt bedrock in significant concentrations (Lyle, 1979), it is very easily weathered (Delvigne et al., 1979). Significantly more apatite (0.29%) and calcite (0.19%) were recorded in sample 560141, than the other two samples (0.01% apatite and <0.07% calcite), which supports the finding by Cox et al. (2013), using the CISED methodology, that significantly more carbonate was present in Sample 560141 than the other 2 samples.

Overall results from XRD and QEMSCAN® analyses are consistent, within the limitations of each method as set out by (Boni et al., 2013), and suggest a mineralogical makeup similar to “saprock” which Hill et al. (2001) found at the base of the lithomarge layer in the underlying Interbasaltic Formation. QEMSCAN® allowed greater characterization of the significant quantity of amorphous material in the samples than XRD, but was unable to distinguish between polymorphs. QEMSCAN® also allowed identification and mapping of trace mineralogy at concentrations below the detection limits of XRD. It should be noted that quantification analyses by XRD cannot be directly compared with measurements by QEMSCAN®, as XRD is reported in wt % whilst QEMSCAN® results refer to modal abundance (vol %), as accurate densities of each mineral were uncertain in this study and so wt % were not calculated (Boni et al., 2013).

3.3 Distribution of Cr and Ni within minerals

Ni was generally dispersed throughout element Maps 0031, 0032 and 0061 (which had the lowest
maximum Ni concentrations), with areas of elevated Ni concentrations associated with individual minerals being more obvious in Maps 0029, 0030, 0043, 0059 and 0063 (which had the highest maximum Ni concentrations). Similarly less Cr was identified in element Maps 0032 and 0061 (<900 mg kg\(^{-1}\)), where it was generally dispersed throughout the maps and could not be attributed to specific minerals. Insignificant quantities of Cr were identified in map 0031. As Map 0029 duplicated what is shown in Maps 0059 and 0063, results from Maps 0030, 0043, 0059 and 0063 are presented in Figures 5 to 8. All results from elemental analysis are presented as wt % of the relevant oxide.

3.3.1 Chrome spinel

Quantitative analysis of 11 individual points within chrome spinels revealed that concentrations of Cr were typically in the range 18 to 40%. Given the proportion of chrome spinel identified in each sample by QEMSCAN\(^\text{®}\), if these Cr concentrations are typical of chrome spinels in the sample, chrome spinels contribute between 20 and 80% of total Cr in each sample. Fe, Al and Mg contents in chrome spinels were typically 14 to 50%, 5 to 30% and 3 to 17% respectively, with Ni content being positively correlated with Mg content and negatively correlated with Ca and Mn content. Si concentrations were generally less than 0.02% while Ti was only elevated (9% and 14%) at two of the points identified as chrome spinel. 500 to 2500 mg kg\(^{-1}\) of Ni and 1300 to 11000 mg kg\(^{-1}\) V was identified in all chrome spinels. Given that chrome spinels had been investigated by point analysis, only one map (0059, Figure 7) was selected to include a chrome spinel, and in this case, Cr and Ni concentrations were both within the range noted in the point analysis. Map 0043 (Figure 6) also revealed what appears to be a small Cr
spinel of Fe-Mg oxide with elevated Cr.
Figure 5 Detailed mapping of sample 558363 (Map 0030): (a) shows a BSE image of the map area; (b) shows mineralogical mapping of the map area (key for this map shown in Figure 4); and, (c), (d), (e), (f), (g) and (h) show elemental mapping for Cr, Ni, Al, Mg, Si and Fe.

Figure 6 Detailed mapping of sample 558363 (Map 0043): (a) shows a BSE image of the map area; (b) shows mineralogical mapping of the map area (key for this map shown in Figure 4); and, (c), (d), (e), (f), (g) and (h) show elemental mapping for Cr, Ni, Al, Mg, Si and Fe.
Figure 7 Detailed mapping of sample 560141 (Map 0059): (a) shows a BSE image of the map area; (b) shows mineralogical mapping of the map area (key for this map shown in Figure 4); and, (c), (d), (e), (f), (g) and (h) show elemental mapping for Cr, Ni, Al, Mg, Si and Fe.

Figure 8 Detailed mapping of sample 560141 (Map 0063). (a) shows a BSE image of the map area, (b) shows mineralogical mapping of the map area (key for this map shown in Figure 4), whilst (c), (d), (e), (f), (g) and (h) show elemental mapping undertaken for Cr, Ni, Al, Mg, Si and Fe.
Fe oxides were easily identified and therefore could be examined in detail using point analysis. Individual point analysis of 18 points identified as iron oxides in QEMSCAN® analysis, revealed these minerals were a combination of primary iron oxides and iron oxides intergrown with clays, that are known to be alteration products of both the weathered olivine (Delvigne et al., 1979) and pyroxene (Noack et al., 1993) that originated in the underlying basalt. Fe oxides intergrown with clays were identified by their textured appearance on BSE images and the presence of Si at concentrations of greater than 1.5%. Primary oxides by comparison had Si concentrations of <1.5% and were smooth. Generally the highest Fe concentrations (>65%) were encountered in the primary oxides, while lesser concentrations (30 to 65%) were present in intergrown oxides and clays. Cr concentrations in these minerals were generally less than 150 mg kg\(^{-1}\), with the exception of Cr in primary iron oxides which was greater than 2000 mg kg\(^{-1}\) in two out of the four primary iron oxides tested. Ni concentrations were also generally less than 100 mg kg\(^{-1}\), however elevated Ni concentrations (between 100 and 400 mg kg\(^{-1}\)) were identified in 5 of the 18 points tested, 4 of which were associated with intergrown oxides. Quantin et al.’s (2008) observation that only secondary Fe-Mn-oxides (and not secondary Fe-oxides) contained elevated Ni, was not confirmed in secondary iron oxides in this study as all secondary Fe-oxides contained some Ni, and Mn concentrations in none of the Fe-oxides exceed 1.5%.

Elemental mapping revealed similar results, with minerals with high Fe content not necessarily coinciding with areas of significantly elevated Cr and Ni (Figures 5 to 8). However mapping did
highlight a number of minerals with elevated Cr (450-2000 mg kg\(^{-1}\)) and Ni (500-1900 mg kg\(^{-1}\)) with high Fe (>30%) and Ti (>10%) and zero Si concentrations. These minerals were identified as primary Fe-Ti oxides. Although these minerals contained elevated Ti, inspection of Figures 5 to 8 showed Ti was not necessarily correlated with either elevated Cr or Ni. No secondary iron oxides intergrown with clays, containing elevated Ni or Cr were identified during elemental mapping. This was not surprising as mapping did not specifically target Fe oxides identified in QEMSCAN® analysis, as these had been extensively investigated by point analysis. The primary oxides noted above are very small particles that were obvious due to their elevated Fe concentration.

3.3.3 Pyroxene

Elevated Ni (500-1000 mg kg\(^{-1}\)) and Cr (500-3500 mg kg\(^{-1}\)) were identified in mineral grains in Map 0032 (2 No) and 0043 (Figure 6) (2 No) that contained Si (approx. 50%), Al (2-14%), Fe (5-10%), Ca (8%), and Mg (10-15%), with no Na or K present. Both grains on map 0043 were identified by QEMSCAN® as Ca Mg Fe silicates, but both grains on Map 0030 (Figure 5) were smaller than the QEMSCAN® pixel size and were therefore not categorised. Given the underlying geology is basalt and that concentrations of Si, Al, Fe, Ca and Mg fall within the range reported for pyroxenes in Deer et al. (1992), it is likely that all 4 grains are pyroxene, which is known to host elevated Ni and Cr. In contrast significant areas of Map 0029 were identified as Ca Mg Fe silicates by QEMSCAN®, but did not contain significantly elevated Cr or Ni.
3.3.4 Olivine

Between 1000 and 2500 mg kg\(^{-1}\) of Ni and insignificant quantities of Cr were observed in maps 0029 and 0063 (Figure 8) in distinct areas in agglomerations within the soil matrix. These areas, that were composed of 30-40% Si, 10-35% Fe, 25-50% Mg but no Al, were identified as Mg and Fe silicates (which includes olivine) by QEMSCAN\(^{\text{®}}\) and have a composition that is consistent with and Mg rich olivine (Deer et al., 1992). Mg rich olivine is known to host both Ni and Cr, but generally Cr is present as minute plates of chromite (Deer et al., 1992). Increasing amounts of Mg are often associated with increased Ni (Wedephol, 1978), and this is observed as 2500 mg kg\(^{-1}\) Ni was recorded in Map 0063 (Figure 8) in an area with 48% Mg and 1000 mg kg\(^{-1}\) Ni in Map 0029 in an areas with 25% Mg.

3.3.5 Clay like minerals

Clays and other clay like minerals were generally identified by visual inspection as specific grains with mottled or dappled surfaces or the secondary minerals that appear to make up the matrix in large agglomerations. Although these minerals appeared to be ubiquitous, it was impossible to visually identify which contained elevated Ni and Cr and therefore point analysis did not reveal significantly elevated concentrations of Cr and Ni in clay-like minerals. Typically concentrations of Cr and Ni identified during point analysis of clay-like grains were between 100-400 and 300-800 mg kg\(^{-1}\) respectively. In contrast mapping revealed concentrations of Ni of up to 2200 mg kg\(^{-1}\) in some claylike minerals whilst no significantly elevated Cr was identified in any of these materials, other than whisps of elevated Cr (approx. 2000 mg kg\(^{-1}\)) within what appeared to be a claylike weathering products on the
boundaries of a distinct grain of olivine in map 0063 (Figure 8) which appear to be associated with depleted Mn and Fe.

Elevated Ni concentrations (up to 2200 mg kg\(^{-1}\)) were hosted in what appeared to be clay-like materials (generally identified as Fe Al (Mg) silicates by QEMSCAN\(^{®}\)). This mineral contained 14-24% Si, 5-16% Al, 6-20% Fe and up to 9% Mg, with increasing Ni concentration being weakly correlated with increasing Fe. Delvigne et al. (1979) reported that during weathering in shallow media under both hydrated and oxidizing conditions, iron enters into the chlorite lattice forming a mixed structure of goethite and magnesium smectite.

Maps 0030 (Figure 5) and 0043 (Figure 6) were targeted on areas of what appeared to be agglomerations containing claylike minerals. Map 0030 shows elevated Ni (1000 to 1750 mg kg\(^{-1}\)) throughout the whole map in some of the grains that were identified as Fe Al (Mg) silicates by QEMSCAN\(^{®}\). A particularly large grain in the bottom left of Map 0030, hosting 1300 mg kg\(^{-1}\) of Ni, was identified as a mixture of Fe Al (Mg) silicates and kaolinite by QEMSCAN\(^{®}\). Less Ni was present in clay like minerals in map 0043, with a large grain, identified as Fe Al (Mg) silicates by QEMSCAN, hosting 700 mg kg\(^{-1}\) Ni and a smaller grain QEMSCAN\(^{®}\) identified as Fe Al (Mg) silicates mixed with illite, hosting 500-600 mg kg\(^{-1}\) Ni.

Map 0059 (Figure 7) surveyed an area of what appeared to be olivine, that was in places significantly
weathered, enclosing a chrome spinel. Elevated Ni was encountered throughout the grain, with the lowest concentrations (400-1000 mg kg\(^{-1}\)) observed in Mg rich areas (18-25% Mg) at the centre of the grain. These areas have very little Al, and were identified as Mg Fe silicates by QEMSCAN\(^{®}\) and are likely to be predominantly unweathered olivine. Concentrations of Ni increase in surrounding areas, which also show increased Al and Fe and decreased Mg compared with the olivine. These are identified by QEMSCAN\(^{®}\) as Fe Al (Mg) silicates and are likely to be protoclays that are initial alteration products of olivine. The highest concentrations of Ni (up to 2000 mg kg\(^{-1}\)) are found in fractures within the grain that also have the highest Al (up to 25%) and Fe (up to 28%) and lowest Mg (approximately 10%) concentrations, suggesting Ni and Fe are accumulating in the alteration products of olivine, which are likely to be clay-like minerals.

Map 0063 (Figure 8) includes an olivine grain (50% Mg) with 2500 mg kg\(^{-1}\) of Ni that is enclosed within a soil grain that was shown to also include feldspars and Fe Al (Mg) silicates using QEMSCAN\(^{®}\). Ni is present in lower concentrations (400-1000mg/kg) within a fracture in the olivine and the surrounding material. These areas also have greater concentrations of Al (15%) and Fe (30%) indicating they are alteration products of the olivine.

3.3.6 Carbonates

10 analysis point were undertaken on calcite minerals and 4 analysis points were undertaken in apatite minerals from sample 560141. Generally Ca concentrations ranged from 20 to 60% at these points,
with elevated P (30 to 35%) recorded in apatite samples. Insignificant amounts of Cr (<60 mg kg\(^{-1}\)) and Ni (<90 mg kg\(^{-1}\)) were identified in all but two of these 14 samples, with 360 mg kg\(^{-1}\) of Ni found in 2 calcite points and 200 and 400 mg kg\(^{-1}\) of Cr found in a point analysed on apatite and a point on calcite respectively. Map 0061 was selected to include areas identified as apatite during QEMSCAN\(^{®}\) analysis, however no elevated Ni or Cr was identified.

3.4 Relation of results to oral bioaccessibility

Total Ni concentrations were approximately 50% greater in samples 559363 and 559503 than in sample 560141, but the greatest amount of bioaccessible Ni (9.94 mg kg\(^{-1}\) (gastric phase)) was observed in sample 560141. In contrast approximately 50% more total Cr was observed in sample 558383 than the other 2 samples, with gastric (G) and gastrointestinal (GI) Cr showing similar trends. Total and bioaccessible Ni and Cr for the three samples as measured during the Tellus survey and by Barsby et al. (2012) are provided in Table S1 in the supporting information.

Using non-specific sequential extraction (CISED) undertaken on the same soil samples, Cox et al. (2013) identified carbonate, Al rich, clay and Fe oxide components that contained bioaccessible Ni. QEMSCAN\(^{®}\) analysis identified the presence of greater amount of Ca carbonates (calcite) and phosphates (apatite) in Sample 560141 than the other soils (Fig. 9(b)). This supports the results of previous CISED extractions (Cox et al., 2013) which attributed more bioaccessible Ni (37%) to Ca dominated phases in this soil than the other 2 soils.
Figure 9 Percentage composition of the trace minerals (a) chrome spinel (including chromite) and (b) apatite and calcite (including other Ca carbonates and phosphate) plotted with (a) total Cr concentration and (b) bioaccessible Ni concentration.

Al-oxides were not identified by either QEMSCAN or XRD analysis in this study, suggesting that the Al dominant component that contained significant amounts of bioaccessible Ni identified by Cox et al. (2013) is likely to be an amorphous protoclay or precursor mineral that is dispersed within the soil matrix. This precursor mineral was shown by Cox et al. (2013) not to contain bioaccessible Cr. However other clays-like minerals hosted significant quantities of both bioaccessible Ni and to a lesser extent bioaccessible Cr. Although they varied significantly in composition, Ni was found to accumulate in many (but not all) of these clay-like minerals. Hill et al. (2001) observed similar accumulation of Ni in the lithomarge within laterites in the Antrim Lava Group, which they postulated was due to substitution of Ni in montmorillonite or vermiculite in the lithomarge. As substituted Ni would be readily released in the stomach, Ni present in these clay-like minerals is likely to be bioaccessible.
As predicted by Cox et al. (2013) EPMA point analysis in this study identified Fe oxides with high Al and Si content that were identified as Fe oxides intergrown with clays. This intergrown oxides contained elevated Ni that would be likely to be bioaccessible. Small quantities of Cr were present in these minerals, accounting for the small amount of bioaccessible Cr identified in Fe-oxides in Cox et al. (2013).

Cox et al. (2013) reported that the majority of Cr in these soils was not bioaccessible. In this study, total chromium was found to be strongly correlated to the presence of chrome spinel in all samples (Figure 9(a)). Chrome spinels are highly recalcitrant minerals, which is reflected in the low bioaccessibility (approx 2%) for each of these samples (Cox et al., 2013). Elevated Cr concentrations were also identified in primary metal oxides which are also highly recalcitrant and therefore unlikely to contribute significantly to oral bioaccessibility. Some elevated Cr (approximately 200 to 400 mg kg\(^{-1}\)) was identified in weathered olivine and clays and some calcite and apatite, which are likely to be more bioaccessible. Cr concentrations were generally low in most calcite, apatite, feldspars and iron oxides intergrown with clays.
4.0 CONCLUSIONS

The geochemical composition of the 3 soils is similar reflecting that they overlie bedrock of similar origin. Geochemical and mineralogical data indicate the soils are consistent with the weathered basalt, particularly the “saprock” within the lithomarge layer from the laterite profile (Hill et al., 2001).

Mineralogical investigation of the samples by quantitative XRD and QEMSCAN® was generally consistent within the limitations of each method. QEMSCAN® allowed greater characterization of the significant quantity of amorphous material in the samples than XRD, but was unable to distinguish between polymorphs. QEMSCAN® also allowed rapid identification and mapping of trace mineralogy at concentrations below the detection limits of XRD. Results of both techniques indicate significant amorphous content (>60%) in the samples, which has been attributed to organic materials and non-crystalline weathering products such as amorphous iron oxides and precursor minerals for clays, suggesting that weathering of the soils is incomplete. Quartz and plagioclase feldspar were identified by both XRD and QEMSCAN®, however QEMSCAN® also identified K-feldspar, pyroxene and olivine. Hematite was identified by XRD, whilst QEMSCAN® identified a variety of metal oxides and hydroxides, at trace concentrations (<0.6%). These included titanium oxides, iron oxides, ilmenite, Mn-Fe oxides and chrome spinels. Whilst apatite and calcite were identified in all samples by QEMSCAN®, significantly more was recorded in sample 560141, than the other two samples.

Cr was identified by EPMA in chrome spinel at concentrations that could account for up to 80% of the Cr
in each sample. EPMA also identified up to 2000 mg kg\(^{-1}\) Cr in some primary iron oxides and up to 3500 mg kg\(^{-1}\) Cr in pyroxene. Surprisingly Cr was identified at concentrations of up to 400 mg kg\(^{-1}\) in 2 out of 14 of the apatite and calcite points investigated during point analysis by EPMA. Limited Cr was identified in secondary Fe oxides, olivine and clay like minerals. The existence of the majority of total Cr in highly recalcitrant chrome spinel and primary metal oxides, and to a lesser extent olivine and pyroxene, explains the very low Cr bioaccessibility recorded in these samples, whilst the slightly elevated Cr identified in secondary iron oxides, clay like materials, calcite and apatite is likely to be more bioaccessible.

Although Ni was identified in chrome spinel (up to 2500 mg kg\(^{-1}\)), primary iron oxides (up to 1900 mg kg\(^{-1}\)), Mg rich olivine (up to 2500 mg kg\(^{-1}\)) and pyroxene (up to 1000 mg kg\(^{-1}\)), Ni was distributed more widely throughout the samples than Cr, with concentrations of up to 400 mg kg\(^{-1}\) identified in the amorphous secondary iron oxides (especially those intergrown with clays) and concentrations of up to 2200 mg kg\(^{-1}\) in some of the amorphous clay-like minerals that are likely to be protoclays or precursor clay minerals. Although it was impossible to visually identify which of these materials contained elevated Ni, elemental mapping revealed that some elevated Ni appeared to be associated directly with alteration products formed due to weathering of olivine (although this was not always the case) and increasing Ni concentration appeared to be weakly correlated with increasing Fe in “clay-like” minerals. The greater amount of Ni than Cr present in secondary oxides and other weathering products is likely to originate from weathered olivine (which contained insignificant amounts of Cr), explaining the higher
bioaccessibility of Ni than Cr in these soils. Calcite and apatite were also found to host significant
amounts of bioaccessible Ni in 1 of the 3 samples.

The combined analysis approach adopted in this investigation, utilising mineralogical analysis, elemental
mapping and standard chemical analysis, allows the minerals hosting PTEs to be clearly identified,
allowing increased understanding of the bioaccessibility of PTEs in soils.

5.0 ACKNOWLEDGMENTS

Geochemistry data were provided by the Geological Survey of Northern Ireland as part of the Tellus
Project, which was funded by the Department of Enterprise, Trade and Investment of Northern Ireland
and by the EU ’Building Sustainable Prosperity’ programme of the Department of Agriculture and Rural
Development. QEMSCAN® and EPMA analysis was supported by the EU INTERREG IVA-funded
Tellus Border project. The authors express their thanks to Ben Buse at University of Bristol and
Jonathan Wilkins at X-Ray Mineral Services for assistance with EPMA and XRD analysis.

6.0 REFERENCES

Albanese, S., Sadeghi, M., Lima, A., Cicchella, D., Dinelli, E., Valera, P., Falconi, M., Demetriades, A.,
De Vivo, B., 2015. GEMAS: Cobalt, Cr, Cu and Ni distribution in agricultural and grazing land soil
of Europe. J. Geochemical Explor. 1–13. doi:10.1016/j.gexplo.2015.01.004

doi:10.1016/j.mineng.2009.03.012

Chartered Institute of Environmental Health (CIEH), 2009. Professional Practice Note: Reviewing human health risk assessment reports invoking contaminant oral bioavailability measurements or estimates.

Costa, C., Reis, A.P., Ferreira da Silva, E., Rocha, F., Patinha, C., Dias, A.C., Sequeira, C., Terroso, D.,

Cruickshank, J.G., 1997. Soil and Environment: Northern Ireland. Agricultural and Environmental Scince Division, DANI and The Agricultural and Environmental Science Department, The Queen’s University of Belfast, Belfast.

doi:10.1016/S0016-7878(01)80013-4

doi:10.1016/j.geoderma.2007.08.009

Nottingham.

747
Supporting information
<table>
<thead>
<tr>
<th></th>
<th>558363</th>
<th>559503</th>
<th>560141</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Ni by XRF (mg kg(^{-1}))</td>
<td>174.50</td>
<td>166.50</td>
<td>121.60</td>
</tr>
<tr>
<td>Bioacc Ni (G) (mg kg(^{-1}))</td>
<td>4.34</td>
<td>3.39</td>
<td>8.84</td>
</tr>
<tr>
<td>Ni BAF (G) (%)</td>
<td>2.49</td>
<td>2.04</td>
<td>7.27</td>
</tr>
<tr>
<td>Bioacc Ni (GI) (mg kg(^{-1}))</td>
<td>2.45</td>
<td>1.80</td>
<td>5.00</td>
</tr>
<tr>
<td>Ni BAF (GI) (%)</td>
<td>1.41</td>
<td>1.08</td>
<td>4.11</td>
</tr>
<tr>
<td>Total Cr by XRF (mg kg(^{-1}))</td>
<td>447.70</td>
<td>299.70</td>
<td>293.10</td>
</tr>
<tr>
<td>Bioacc Cr (G) (mg kg(^{-1}))</td>
<td>9.20</td>
<td>4.54</td>
<td>3.20</td>
</tr>
<tr>
<td>Cr BAF (G) (%)</td>
<td>2.06</td>
<td>1.51</td>
<td>1.09</td>
</tr>
<tr>
<td>Bioacc Cr (GI) (mg kg(^{-1}))</td>
<td>7.39</td>
<td>3.00</td>
<td>1.83</td>
</tr>
<tr>
<td>Cr BAF (GI) (%)</td>
<td>1.65</td>
<td>1.00</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Table S1 Total Ni and Cr concentrations measured by XRF during the Tellus survey and bioaccessible Ni and Cr concentrations measured using the UBM method by Barsby et al. (2012).