Manipulation of circular polarised electromagnetic waves by artificial periodic structures (Invited Paper)

Manipulation of circular polarised electromagnetic waves by artificial periodic structures

D. Zelenchuk, and V. Fusco

December 8, 2015
Circularly polarised wave

RHCP wave

The hand is defined from the point of view of the source

\[|E_x| = |E_y| \]

\[\varphi_y - \varphi_x = \pm \frac{\pi}{2} \]

LHCP wave
• Spectral selectivity: CP frequency selective surfaces
• Beam forming: Conical beam generation with rotational phase shift
• Polarisation selectivity: circularly polarised selective surface (CPSS)
Motivation

- Frequency selective surfaces (FSS) remain a key component of satellite antenna feeding sub-systems.
- They provide low-loss filtering and beam-splitting capacity that allows using single antenna for multi-band operation.
- FSS is dual-polarisation or even circular polarisation (CP) properties.
- Properties of the dielectric stack utilised to support printed FSS structure becomes crucial for successful design.
<table>
<thead>
<tr>
<th></th>
<th>Ku-band</th>
<th>Ka-band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequencies (GHz)</td>
<td>11.7-12.75</td>
<td>17.3-20.2</td>
</tr>
<tr>
<td>Losses (dB)</td>
<td>Reflected <0.25dB</td>
<td>Transmitted <0.25dB</td>
</tr>
<tr>
<td>Rejection (dB)</td>
<td>30 dB</td>
<td>N/A</td>
</tr>
<tr>
<td>Axial Ratio (dB)</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>

45 degree angle of incidence!
\[\Gamma_i = -\frac{1}{1 + 2Z_c/Z_0} \]

\[\Gamma_c^{TE} = \Gamma_c^{TM} \]
Ku-band Reflection

Ka-band Transmission

Axial Ratio Reflection

Axial Ratio Transmission
Material stack inside the structure
Full-wave simulation of the FSS with different stack configurations.
There is a notable difference between the measured results and simulation of the material stack.
\[\varepsilon_r = \begin{pmatrix} 1.02 & 0 & 0 \\ 0 & 1.05 & 0 \\ 0 & 0 & 1.05 \end{pmatrix} \]

\[\tan \delta = \begin{pmatrix} 0.007 & 0 & 0 \\ 0 & 0.012 & 0 \\ 0 & 0 & 0.007 \end{pmatrix} \]
Measured results:

- FSS
- Meas T
- Meas R
- Sim T
- Sim R
- Meas A
- Sim A

Frequency (GHz)
Magnitude (dB)
Axial ratio (dB)
Conical beam applications

- Conical beam antennas have omnidirectional radiation pattern in azimuth and a notch in the normal direction
- “Exotic” applications:
 - Data transfer by free-space modes with non-zero orbital angular momentum
 - Vortex coronography, where object is in the “shadow” of much brighter one
Conical beam generation

- Helicoidal dish
- Spiral phase plate
- Sectorial spiral reflector
Generation of helical beam: (a) amplitude of incident Gaussian beam, (b) spiral phase plate, (c) amplitude of resultant Laguerre-Gaussian beam.
Rotational phase shift

\[\mathbf{E}_R = \left(\begin{array}{cc} \cos \theta_r & -\sin \theta_r \\ \sin \theta_r & \cos \theta_r \end{array} \right) \left(\begin{array}{cc} \Gamma_{x'} & 0 \\ 0 & \Gamma_{y'} \end{array} \right) \left(\begin{array}{cc} \cos \theta_r & \sin \theta_r \\ -\sin \theta_r & \cos \theta_r \end{array} \right) \mathbf{E}_i \]

\[\Gamma_{x'} = -\Gamma_{y'} \]

Half-wave plate condition

\[\mathbf{E}_i = \frac{1}{2} \left(\begin{array}{c} 1 \\ \pm j \end{array} \right) e^{-j k z} \]

CP excitation

\[\mathbf{E}_R = \Gamma_{x'} e^{\pm j 2 \theta_r} \frac{1}{2} \left(\begin{array}{c} 1 \\ \pm j \end{array} \right) e^{j k z} \]

Unit cell of the reflecting FSS
LP analysis of reflecting FSS

<table>
<thead>
<tr>
<th>R_1, mm</th>
<th>R_2, mm</th>
<th>R_3, mm</th>
<th>R_4, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>5.9</td>
<td>6.8</td>
<td>8</td>
</tr>
<tr>
<td>α_1, deg</td>
<td>α_2, deg</td>
<td>h, mm</td>
<td>d, mm</td>
</tr>
<tr>
<td>21</td>
<td>95</td>
<td>7.5</td>
<td>19</td>
</tr>
</tbody>
</table>
CP analysis of reflecting FSS

\[
E_R = \Gamma_{x'} e^{\pm j 2 \theta_r} \frac{1}{2} \left(1 \mp j \right) e^{j k z}
\]

\[
\begin{align*}
|\Gamma| & = \begin{cases} 0 & \text{Out} \\ 1 & \text{In} \end{cases} \\
\angle \Gamma & = \begin{cases} 0 & \text{Out} \\ 90^\circ & \text{In} \end{cases}
\end{align*}
\]
Array factor of a finite array with given phase distribution.

\[AF_{\theta,\varphi} = \sum_{m} \sum_{n} A_{mn} e^{-j(k x_m \sin \theta \cos \varphi + k y_n \sin \theta \sin \varphi + \psi(x_m, y_n))} \]

\[\psi(x, y) = \begin{cases}
\tan^{-1} \frac{y}{x}, & x > 0, y > 0 \\
\tan^{-1} \frac{y}{x} + \pi, & x < 0 \\
\tan^{-1} \frac{y}{x} + 2\pi, & x > 0, y \leq 0
\end{cases} \]

Predicted array factor of the 10x10 array with spiral phase distribution (a) amplitude, (b) phase.
Simulated 3D bi-static RCS of the 10x10 slit ring reflectarray with spiral phase distribution.
The reflector has been milled from a 1mm thick aluminum with solid aluminum ground plane. The 7.5mm separation is maintained with plastic screws.
The setup consists of illuminating dual-polarized horn and rotating fixture with reflector and receiving Fermi antenna.
Fermi antenna and its radiation pattern in E- and H-plane

Rotating fixture with the reflector and Fermi antenna

Fermi antenna foam fixture
Comparison of simulated and measured radiation patterns (normalised) when excited by a normally incident x-polarized plane wave at 10.4 GHz.

(a) E_θ for $\varphi=0$ and $-90<\theta<90$

(b) E_θ for $\varphi=90$ and $-90<\theta<90$
Comparison of simulated and measured radiation patterns (normalised) in plane $\varphi=0$ when excited by a normally incident CP-polarized plane wave at 10.4 GHz.
Transmit-array

Unit cell

Measurement setup
Measured radiation pattern

Magnitude

Phase

(a) RHCP, (b) LHCP excitation
Reciprocal symmetrical right-hand circular polarisation selective surface: (a) – reflection, (b) – transmission.
General case: LP and CP Jones matrices

\[T_{lin}^f = \begin{pmatrix} S^{21}_{xx} & S^{21}_{xy} \\ S^{21}_{yx} & S^{21}_{yy} \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \]

\[T_{circ}^f = \frac{1}{2} \begin{pmatrix} A + D - j(B - C) & A - D + j(B + C) \\ A - D - j(B + C) & A + D + j(B - C) \end{pmatrix} \]

RHCPSS: LP and CP Jones matrices

\[T_{circ}^f = \begin{pmatrix} 0 & 0 \\ 0 & S_{LCP,LCP}^{21} \end{pmatrix} \quad A = D = jB, B = -C \]
Single SRR model

Co-polar

Cross-polar
SRRs magnetic coupling

Twisted SRR
Unit cell

Coupling inductance

\[L_m = k_h L_3 \]
Equivalent circuit of 90 degree TSSR
RO 4003C h3=0.5mm
Rohacell foam h2=5mm
RO 4003C, h1=0.5mm